[1]. |
RobbR.A. Biomedical imaging, visualization, and analysis. John Wiley and Sons, Inc., 1999.
|
[2]. |
BĕlohlávekJ., DytrychV. and LinhartA. Pulmonary embolism, part I: Epidemiology, risk factors and risk stratification, pathophysiology, clinical presentation, diagnosis and nonthrombotic pulmonary embolism. Experimental and Clinical Cardiology, 18(2), p.129, 2013.
|
[3]. |
MaX., NiuY., GuL., WangY., ZhaoY., BaileyJ. and LuF. Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recognition, 110, p. 107332, 2021.
|
[4]. |
YangX., LinY., SuJ., WangX., LiX., LinJ. and ChengK.T. A two-stage convolutional neural network for pulmonary embolism detection from CTPA images. IEEE Access, 7, pp.84849-84857, 2019.
|
[5]. |
ShiL, RajanD, AbedinS, YellapragadaM.S, BeymerD, and DehghanE. Automatic Diagnosis of Pulmonary Embolism Using an Attention-guided Framework: A Large-scale Study. In Proceedings of the Third Conference on Medical Imaging with Deep Learning, 121, pp.743-754, 2020.
|
[6]. |
RajanD., BeymerD., AbedinS. and DehghanE. Pi-PE: A Pipeline for Pulmonary Embolism Detection using Sparsely Annotated 3D CT Images. In Machine Learning for Health Workshop, pp.220-232, 2020.
|
[7]. |
HuangS.C., KothariT., BanerjeeI., ChuteC., BallR.L., BorusN., HuangA., PatelB.N., RajpurkarP., IrvinJ. and DunnmonJ. PENet—A scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging. NPJ digital medicine, 3(1), pp.1-9, 2020.
|
[8]. |
LongK., TangL., PuX., RenY., ZhengM., GaoL., SongC., HanS., ZhouM. and DengF. Probability-based Mask R-CNN for pulmonary embolism detection. Neurocomputing, 422, pp.345-353, 2021.
|
[9]. |
MuenzelD., FingerleA.A., ZahelT., SauterA., VlassenbroekA., DobritzM., RummenyE.J.and NoëlP.B. CT angiography: post-processed contrast enhancement for improved detection of pulmonary embolism. Academic radiology, 24(2), pp.131-136, 2017.
|
[10]. |
LeCunY., BottouL., BengioY. and HaffnerP. Gradient-based learning applied to document recognition. In Proceedings of the IEEE, 86(11), pp.2278-2324, 1998.
|
[11]. |
SimonyanK, and ZissermanA. Very deep convolutional networks for large-scale image recognition. ICLR 2015, 2015.
|
[12]. |
HeK., ZhangX., RenS. and SunJ. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.770-778, 2016.
|
[13]. |
SzegedyC., LiuW., JiaY., SermanetP., ReedS., AnguelovD., ErhanD., VanhouckeV. and RabinovichA. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.1-9, 2015.
|
[14]. |
HowardA. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv: 1704. 04861, 2017.
|
[15]. |
https://www.kaggle.com/c/rsna-str-pulmonary-embolism-detection/data (last accessed March 2021)
|
[16]. |
TajbakhshN., ShinJ.Y., GotwayM.B.and LiangJ. Computer-aided detection and visualization of pulmonary embolism using a novel, compact, and discriminative image representation. Medical image analysis, 58, p. 101541, 2019.
|