1. L. A. Gatys, A. S. Ecker, and M. Bethge, “Image Style Transfer using Convolutional Neural Networks,” in Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414-2423, IEEE, 2016 2. L. A. Gatys, A. S. Ecker,M. Bethge, “A Neural Algorithm of Artistic Style,” arXiv Preprint arXiv:1508. 06576, 2015 3. L. A. Gatys, M. Bethge, A. Hertzmann,E. Shechtman, “Preserving Color in Neural Artistic Style Transfer,” arXiv Preprint arXiv:1606. 05897v1, 2016 4. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al., “Generative Adversarial Nets,” in Proceedings of International Conference on Neural Information Processing Systems, pp. 2672-2680, MIT Press, 2014 5. A. Radford, L. Metz,S. Chintala, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks,” arXiv preprint arXiv:1511. 06434, 2015 6. J. Y. Zhu, T. Park, P. Isola,A. A. Efros, “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks,” inProceedings of IEEE International Conference on Computer Vision, pp. 2242-2251, IEEE Computer Society, 2017 7. A. Odena, C. Olah,J. Shlens, “Conditional Image Synthesis with Auxiliary Classifier GANs,” arXiv Preprint arXiv:1610. 09585v4, 2016 8. M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” in Proceedings of International Conference on Neural Information Processing Systems, pp. 2672-2680, MIT Press, 2014 9. X. Mao, Q. Li, H. Xie, R. Y.K. Lau, Z. Wang,S. P. Smolly, “Least Squares Generative Adversarial Networks,” arXiv Preprint arXiv:1611. 04076v3, 2016 10. O. Ronneberger, P. Fischer,T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” inProceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234-241, Springer, Cham, 2015 11. P. Isola, J. Y. Zhu, T. Zhou,A. A. Efros, “Image-to-Image Translation with Conditional Adversarial Networks,” inProceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 5967-5976, IEEE Computer Society, 2017 12. “Paintschainer,”(https://github.com/pfnet/PaintsChainer, accessed March 29 2017) 13. L. Zhang, Y. Ji,X. Lin, “Style Transfer for Anime Sketches with Enhanced Residual U-Net and Auxiliary Classifier GAN,” arXiv Preprint arXiv:1706. 03319v2, 2017 14. Y. Liu, Z. Qin, T. Wan,Z. Luo, “Auto-Painter: Cartoon Image Generation from Sketch by using Conditional Generative Adversarial Networks,” arXiv Preprint arXiv:1705. 01908, 2017 15. K. He, X. Zhang, S. Ren,J. Sun, “Deep Residual Learning for Image Recognition,” inProceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, IEEE Computer Society, 2016 16. S. Iizuka, E. Simo-Serra,H. Ishikawa, “Let There Be Color: Joint End-to-End Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classification,” ACM Transactions on Graphics, ACM, Vol. 35, No. 110, 2016 17. R. Zhang, P. Isola,A. A. Efros, “Colorful Image Colorization,” inProceedings of European Conference on Computer Vision, pp. 649-666, Springer, Cham, 2016 18. J. Yu, Z, Lin, J. Yang, X. Shen, X. Lu,T. S. Huang, “Generative Image Inpainting with Contextual Attention,” arXiv Preprint arXiv:1801. 07892, 2018 19. K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” arXiv Preprint arXiv:1409. 1556, 2014 20. D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell,A. A. Efros, “Context Encoders: Feature Learning by Inpainting,” inProceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536-2544, IEEE Computer Society, 2016 21. D. Berthelot, T. Schumm,L. Metz, “BEGAN: Boundary Equilibrium Generative Adversarial Networks,” arXiv Preprint arXiv:1703. 10717, 2017 22. D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” arXiv Preprint arXiv:1312. 6114, 2013 23. C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, et al., “Photo-Realistic Single Image Super-Resolution using a Generative Adversarial Network,” arXiv Preprint arXiv:1609. 04802, 2016 24. C. Li and M. Wand, “Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks,” inProceedings of European Conference on Computer Vision, pp. 702-716, Springer, Cham, 2016 25. H. Winnemöller, “XDoG: Advanced Image Stylization with Extended Difference-of-Gaussiansm,” inProceedings of ACM Siggraph/Eurographics Symposium on Non-Photorealistic Animation and Rendering, pp. 147-156, ACM, 2011 26. “Deepcolor: Automatic Coloring and Shading of Manga-Style Lineart,” (http://kvfrans.com/coloring-and-shading-line-art-automatically-through-conditional-gans/, accessed March 1, 2017 |