Username   Password       Forgot your password?  Forgot your username? 

ISSUES BY YEAR

Volume 15 - 2019

No.1 January 2019
No.1 January 2019
No.2 February 2019
No.2 February 2019
No.3 March 2019
No.3 March 2019
No.4 April 2019
No.4 April 2019
No.5 May 2019
No.5 May 2019
No.6 June 2019
No.6 June 2019

Volume 14 - 2018

No.1 January 2018
No.1 January 2018
No.3 March 2018
No.3 March 2018
No.4 April 2018
No.4 April 2018
No.5 May 2018
No.5 May 2018
No.6 June 2018
No.6 June 2018
No.7 July 2018
No.7 July 2018
No.8 August 2018
No.8 August 2018
No.9 September 2018
No.9 September 2018
No.10 October 2018
No.10 October 2018
No.11 November 2018
No.11 November 2018
No.12 December 2018
No.12 December 2018

Volume 13 - 2017

No.4 July 2017
No.4 July 2017
No.5 September 2017
No.5 September 2017
No.7 November 2017
No.7 November 2017
No.8 December 2017
No.8 December 2017

Volume 12 - 2016

Volume 11 - 2015

Volume 10 - 2014

Volume 9 - 2013

Volume 8 - 2012

Volume 7 - 2011

Volume 6 - 2010

Volume 5 - 2009

Volume 4 - 2008

Volume 3 - 2007

Volume 2 - 2006

Survivable Data Transmission via Selective Hybrid Cipher in Sensor Networks

Volume 7, Number 4, July 2011 - Paper 1 - pp. 303-312

RUIPING MA, LIUDONG XING, HOWARD E. MICHEL and HONGGANG WANG

Electrical and Computer Engineering Department, University of Massachusetts
Dartmouth, 285 Old Westport Rd., Dartmouth, MA, 02747, USA

(Received on April 29, 2010, revised on April 5, 2011)


Abstract:

In wireless sensor networks (WSN), data packets being sent over wireless environments could get corrupted or compromised due to channel noises or malicious attacks. Using traditional full encryption to secure the transmitted data is costly and even not practical for WSN due to the inherent resource-constrained nature of sensor nodes. Selective encryption (SE) that encrypts part of the data can greatly reduce the computational overhead for huge volumes of data in low-power networks. Encrypted data is more sensitive to transmission errors; therefore, additional error correction capability is required to efficiently recover the lost/erroneous encrypted information. In this paper, we propose a new Selective Hybrid Cipher-based mechanism, which integrates AES-based SE and Forward Error Correction codes to achieve both secure and reliable data transmission in WSN. Performance of the proposed mechanism is evaluated using simulations, and is compared with that of the traditional SE-based and full encryption-based mechanisms.

 

References: 23

Click here to download the paper.

Please note : You will need Adobe Acrobat viewer to view the full articles.Get Free Adobe Reader

 

CURRENT ISSUE

Prev Next

Degradation Index Extraction and Degradation Trend Prediction for Rolling Bearing

Xin Zhang, Jianmin Zhao, Xianglong Ni, Haiping Li, and Fucheng Sun

Read more

Explore One Factor of Affecting Software Reliability Demonstration Testing Result

Zhenyu Ma, Wei Wu, Wei Zhang, Jianping Wang, and Fusheng Liu

Read more

On-Condition Maintenance Decision on EMU Bogie

Yonghua Li, Hongjie Yu, Yuehua Gao, and Xiaojia Liang

Read more

Lubrication Characteristics Analysis of a Rotor Bearing for Space Application

Shouqing Huang, Shouwen Liu, Xiaokai Huang, and Fangyong Li

Read more

Analog Circuit Fault Prognostic Approach using Optimized RVM

Chaolong Zhang, Yigang He, Shanhe Jiang, Lanfang Zhang, and Xiaolu Wang

Read more

Speech Enhancement Algorithms with Adaptive Methods

Chunli Wang, Peiyi Yang, Quanyu Wang, Lili Niu, and Huaiwei Lu

Read more

Edge Detection Method based on Lifting B-Spline Dyadic Wavelet

Zhibin Hu, Caixia Deng, Yunhong Shao, and Cui Wang

Read more

Word Sense Disambiguation based on Maximum Entropy Classifier

Chunxiang Zhang, Xuesong Zhou, Xueyao Gao, and Bo Yu

Read more
This site uses encryption for transmitting your passwords. ratmilwebsolutions.com