Username   Password       Forgot your password?  Forgot your username? 


Development and Application of Deep Belief Networks for Predicting Railway Operation Disruptions

Volume 11, Number 2, March 2015 - Paper 2 - pp. 121-134


1 Institute of Data Analysis and Process Design, Zurich University of Applied Sciences (ZHAW), SWITZERLAND
2 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, USA
3 Chair on Systems Science and the Energetic Challenge, European Foundation for New Energy-Electricité de France (EDF) at École Centrale Paris and SUPELEC, FRANCE
4 Department of Energy, Politecnico di Milano, ITALY
5 Institute for Transport Planning and Systems, ETH Zurich, SWITZERLAND

(Received on May 11, 2014, revised on September 25, 2014)


In this paper, we propose to apply deep belief networks (DBN) to predict potential operational disruptions caused by rail vehicle door systems. DBN are a powerful algorithm that is able to detect and extract complex patterns and features in data and has demonstrated superior performance on several benchmark studies. A case study is shown whereby the DBN are trained and applied on real case study from a railway vehicle fleet. The DBN were shown to outperform a feedforward neural network trained by a genetic algorithm.


References: 24

Click here to download the paper.

Please note : You will need Adobe Acrobat viewer to view the full articles.Get Free Adobe Reader


This site uses encryption for transmitting your passwords.