Username   Password       Forgot your password?  Forgot your username? 

ISSUES BY YEAR

Volume 15 - 2019

No.1 January 2019
No.1 January 2019
No.2 February 2019
No.2 February 2019
No.3 March 2019
No.3 March 2019

Volume 14 - 2018

No.1 January 2018
No.1 January 2018
No.3 March 2018
No.3 March 2018
No.4 April 2018
No.4 April 2018
No.5 May 2018
No.5 May 2018
No.6 June 2018
No.6 June 2018
No.7 July 2018
No.7 July 2018
No.8 August 2018
No.8 August 2018
No.9 September 2018
No.9 September 2018
No.10 October 2018
No.10 October 2018
No.11 November 2018
No.11 November 2018
No.12 December 2018
No.12 December 2018

Volume 13 - 2017

No.4 July 2017
No.4 July 2017
No.5 September 2017
No.5 September 2017
No.7 November 2017
No.7 November 2017
No.8 December 2017
No.8 December 2017

Volume 12 - 2016

Volume 11 - 2015

Volume 10 - 2014

Volume 9 - 2013

Volume 8 - 2012

Volume 7 - 2011

Volume 6 - 2010

Volume 5 - 2009

Volume 4 - 2008

Volume 3 - 2007

Volume 2 - 2006

 

A Cost Model for Repairable System Considering Multi-failure type over Finite Time Horizon

Volume 7, Number 2, March 2011 - Paper 8 - pp. 186-194

YUAN FUQING and UDAY KUMAR

Division of Operation and Maintenance
Luleå University of Technology, SE-971 87
Luleå, Sweden

(Received on September 6, 2009, revised on August 9, 2010)

Abstract:

In general, downtime of a system can be attributed due to multiple failure categories and repair costs for each failure categories can be different. Many of these failure types are repaired to a state which can be called as bad as old and such repair actions are termed as “minimal repair”. Many system or components are replaced after a certain number of such minimal repair actions. In this study, we intend to prove that if the system failure process can be described by NHPP (Non Homogenous Poisson Process), then each failure category can also be modelled by NHPP. Based on this, a cost model is developed by using the decomposition of the NHPP and renewal theory. Using the cost model, a model is developed to obtain the optimal number of minimum repair action every failure category. Since it is not possible to find any analytical solution, solution to the renewal function, an approximate approach is introduced to obtain numerical solution. Finally, a numerical example is presented to demonstrate the method.

 

References: 15

Click here to download the paper.

Please note : You will need Adobe Acrobat viewer to view the full articles.Get Free Adobe Reader

 

CURRENT ISSUE

Prev Next

Cascaded Trust Network-based Block-Incremental Recommendation Strategy

Shujuan Ji, Da Li, Qing Zhang, Chunjin Zhang, and Chunxiao Bao

Read more

Cuckoo-based Malware Dynamic Analysis

Lele Wang, Binqiang Wang, Jiangang Liu, Qiguang Miao, and Jianhui Zhang

Read more

Colorization for Anime Sketches with Cycle-Consistent Adversarial Network

Guanghua Zhang, Mengnan Qu, Yuhao Jin, and Qingpeng Song

Read more

Bayesian Network Model for Learning Arithmetic Concepts

Yali Lv, Tong Jing, Yuhua Qian, Jiye Liang, Jianai Wu, and Junzhong Miao

Read more

Collaboration System Design of the Transportation Platform

Zhongwen Wang, Dong Liang, Ruizhen Duan, and Mingshan Chi

Read more

Specific Emitter Identification based on Power Amplifier

Zhen Zhang, Jie Chang, Mengqiu Chai, and Nan Tang

Read more

NRSSD: Normalizing Received Signal Strength to Address Device Diversity Problem in Fingerprinting Po…

Chunxiu Li, Jianli Zhao, Qiuxia Sun, Xiang Gao, Guoqiang Sun, and Chendi Zhu

Read more

Fast AIS Data Decoding Algorithm for Multi-Core CPU

Xiangkun Zeng, Huaran Yan, Yingjie Xiao and Xiaoming Yang

Read more
This site uses encryption for transmitting your passwords. ratmilwebsolutions.com