[1] T. T. Nguyen, S. Yang,J. Branke, “Evolutionary Dynamic Optimization: A Survey of the State of the Art,”Swarm Evolutionary Computation, Vol. 6, pp. 1-24, 2012 [2] C. Li, T. T. Nguyen, M. Yang, S. Yang and S. Zeng, “Multi-Population Methods in Unconstrained Continuous Dynamic Environments: The Challenges,”Information Sciences, Vol. 296, pp. 95-118, 2015 [3] D. Dasgupta, S. Yu,F. Nino, “Recent Advances in Artificial Immune Systems: Models and Applications,” Applied Soft Computing, Vol. 11, No. 2, pp. 1574-1587, 2011 [4] L. N. D.Castro, F. Jose and V.Zuben, “Artificial Immune Systems: Part I-Basic Theory and Applications,” Universidade Estadual de Campinas, Dezembro de, Technical Report 210.1, 1999 [5] L. N. de Castro and F. J. Von Zuben, “Learning and Optimization using the Clonal Selection Principle,”IEEE Transactions on Evolutionary Computation, Vol. 6, pp. 239-251, 2002 [6] K. Trojanowski and S. T. Wierzchon, “Immune-Based Algorithms for Dynamic Optimization,”Information Sciences, Vol. 179, pp. 1495-1515, 2009 [7] A. Gaspar and P. Collard, “From GAs to Artificial Immune Systems: Improving Adaptation in Time Dependent Optimization,” in Proceedings of the Congress on Evolutionary Computation, IEEE Press, Vol. 3, pp. 1859-1866, Piscataway, New Jersey, 1999 [8] F. O. D.Franca, F. J. V. Zuben, and L. N. D. Castro, “An Artificial Immune Network for Multimodal Function Optimization on Dynamic Environments,” inProceedings of Genetic and Evolutionary Computation Conference, pp. 289-296, 2005 [9] F. O. D.Franca and F. J. V. Zuben, “A Dynamic Artificial Immune Algorithm Applied to Challenging Benchmarking Problems,” inProceedings of IEEE Congress on Evolutionary Computation, pp. 423-430, 2009 [10] S. Qian, “Dynamic Stochastic Ranking Selection Immune Optimization Algorithm for Dynamical 0/1 Knapsack Problem,” inProceedings of International Conference on Intelligent Human-Machine Systems and Cybernetics Dynamic, pp. 100-103, 2013 [11] V. S. Aragon, S. C.Esquivel and C. A. C. Coello, “A T-Cell Algorithm for Solving Dynamic Optimization Problems,”Information Sciences, Vol. 181, pp. 3614-3637, 2011 [12] V. S. Aragon, S. C.Esquivel and C. A. Coello, “Artificial Immune System for Solving Dynamic Constrained Optimization Problems,”Metaheuristics for Dynamic Optimization, Vol. 35, pp. 225-263, 2013 [13] A. Sharifi, J. K. Kordestani, M. Mahdaviani,M. R. Meybodi, “A Novel Hybrid Adaptive Collaborative Approach based on Particle Swarm Optimization and Local Search for Dynamic Optimization Problems,”Applied Soft Computing, Vol.32, pp. 432-448, 2015 [14] J. Branke,“Evolutionary Optimization in Dynamic Environments,” Kluwer Academic Publishers, Boston, MA, 2002 [15] T. Blackwell and J. Branke, “Multiswarms, Exclusion, and Anti-Convergence in Dynamic Environments,” IEEE Transactions on Evolutionary Computation, Vol. 10, No. 4, pp. 459-472, 2006 [16] A. B.Hashemi and M. R. Meybodi, “Cellular Pso: A PSO for Dynamic Environments,”Advances in Computation and Intelligence, pp. 422-433, 2009 [17] W. Du and B. Li, “Multi-Strategy Ensemble Particle Swarm Optimization for Dynamic Optimization,”Information Sciences, Vol. 178, pp. 3096-3109, 2008 [18] R. I.Lung and D. Dumitrescu, “A Collaborative Model for Tracking Optima in Dynamic Environments,” inProceedings of IEEE Congress on Evolutionary Computation, pp. 564-567, 2007 |