|
R. W. Brown, Y. C. N. Cheng, E. M. Haacke, M. R. Thompson, R. Venkatesan, “Magnetic Resonance Imaging: Physical Principles and Sequence Design,” 2nd Edition, J. Wiley & Sons, 2013
|
|
B. K. Das, “Basic Principles of MR Imaging,” Springer India, 2015
|
|
R. R. Ernst, “NMR Fourier Zeugmatography,” Journal of Magnetic Resonance, Vol. 213, pp. 510-512, 2011
|
|
E. J. Candes, M. B. Wakin, “An Introduction To Compressive Sampling,” IEEE Signal Process Magazine, Vol. 12, pp. 21-30, 2017
|
|
M. Lustig and D. J. Donoho, “Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging,” Magnetic Resonance in Medicine, Vol. 58, pp. 1182-1195, 1999
|
|
J. Trzasko, C. Haider, and A. Manduca, “Practical Nonconvex Compressive Sensing Reconstruction of Highly-accelerated 3D Parallel MR Angiograms,” in Proceedings of IEEE International Conference on Symposium on Biomedical Imaging: from Nano to Macro, pp. 274-277, 2009
|
|
K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, “SENSE: Sensitivity Encoding for Fast MRI,” Magnetic Resonance in Medicine, Vol. 42, pp. 952-962, 1999
|
|
Manisha, G. Shirividya, S. H. Bharati, et al., “Performance Analysis of CS-MRI Reconstruction using Particle Swarm Optimization for Different Sampling Patterns,” in Proceedings of International Conference on Recent Trends in Electronics, Information & Communication Technology, pp. 205-208, 2017
|
|
A. Li, D. Chen, K. Lin, and G. Sun, “Hyperspectral Image Denoising with Composite Regularization Models,” Journal of Sensors, pp. 1-10, 2016
|
|
A. Li, D. Chen, K. Lin, and G. Sun, “Sparse Representation-based Image Restoration via Supervised Coding,” Optical Review, Vol. 23, No. 5, pp. 776-783, 2016
|
|
A. Li, D. Chen, Z. Wu, G. Sun, and K. Lin, “Self-supervised Sparse Coding Scheme for Image Classification based on Low Rank Representation,” PLOS ONE, Vol. 13, No. 6, pp. 1-15, 2018
|
|
G. Shrividya, S. H. Bharathi, et al., “Performance Analysis of CS-MRI Reconstruction using Particle Swarm Optimization for Different Sampling Patterns,” Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp. 205-208, 2017
|
|
S. Geethanath, R. Reddy, A. S. Konar, S. Imam, and R. Sundaresan, “Compressed Sensing MRI: A Review,” Crit Rev Biomed Eng, Vol. 41, pp. 183-204, 2013
|
|
X. Qu, Y. Hou, F. Lam, D. Guo, and J. Zhong, “Magnetic Resonance Image Reconstruction from Undersampled Measurements using A Patch-based Nonlocal Operator,” Medical Image Analysis, Vol. 18, pp. 843-856, 2014
|
|
M. Lustig, J. M. Santos, J. H. Lee, D. L. Donoho, and J. M. Pauly, “Application of “Compressed Sensing” for Rapid MR Imaging,” Spars, Vol. 58, pp. 1182-1195, 2010
|
|
S. M. Gho, Y. Nam, S. Y. Zho, E. Y. Kim, and D. H. Kim, “Three Dimension Double Inversion Recovery Gray Matter Imaging using Compressed Sensing,” Magnetic Resonance Imaging, Vol. 28, pp. 1395-1402, 2010
|
|
X. Qu, W. Zhang, D. Guo, C. Cai, and S. Cai, “Iterative Thresholding Compressed Sensing MRI based on Contourlet Transform,” Inverse Problems in Science & Engineering, Vol. 18, pp. 737-758, 2010
|
|
F. Knoll, K. Bredies, T. Pock, and R. Stollberger, “Second Order Total Generalized Variation (TGV) for MRI,” Magnetic Resonance in Medicine, Vol. 65, pp. 480-491, 2011
|
|
Y. Dong and J. Ji, “Compressive Sensing MRI with Laplacian Sparsifying Transform,” Proceedings, Vol. 48, pp. 81-84, 2011
|
|
L. D. Lathauwer, B. D. Moor, and J. Vandewalle J, “A Multilinear Singular Value Decomposition,” SIMA Journal on Matrix Analysis and Applications, Vol. 21, pp. 1253-1278, 2000
|
|
T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applications,” in Proceedings of IEEE Conference on Decision and Control, Vol. 641, pp. 640-645, 2004
|
|
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering,” IEEE Transactions on Image Processing, Vol. 16, pp. 2080, 2007
|
|
L. Sun, Y. Huang, C. Cai, and X. Ding, “Compressed Sensing MRI using Total Variation Regularization with K-space Decomposition,” in Proceedings of IEEE International Conference on Image Processing, pp. 3061-3065, 2017
|