|
1. Bar-Cohen, Y., “Biologically Inspired Intelligent Robots using Artificial Muscles”, Strain, vol. 5051, no. 1, pp.19-24, 2003.
|
|
2. Chen, H., Wang, Y., Sheng, J., Chang, L., Wang, Y., “Research of Electro-active Polymer and Its Application in Actuators”, Chinese Journal of Mechanical Engineering, vol. 49, no. 6, pp. 205-214, 2013.
|
|
3. Chen, X., Hisayama, T., “Adaptive Sliding-mode Position Control for Piezo-actuated Stage”, IEEE Transactions on Industrial Electronics, vol. 55, no. 11, pp. 3927-3934, 2008.
|
|
4. Chen, X., Su, C. Y., “Adaptive Control for Ionic Polymer-Metal Composite Actuators”, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 46, no. 10, pp. 1468-1477, 2016.
|
|
5. Edardar, M., Tan, X., Khalil, H. K., “Sliding-mode Tracking Control of Piezo-actuated Nanopositioners”, in Proceedings of American Control Conference, pp. 3825-3830, 2012.
|
|
6. Habineza, D., Rakotondrabe, M., Gorrec, Y. L., “Bouc-Wen Modeling and Feedforward Control of Multivariable Hysteresis in Piezoelectric Systems: Application to a 3-DoF Piezotube Scanner”, IEEE Transactions on Control Systems Technology, vol. 23, no. 5, pp. 1797-1806, 2015.
|
|
7. Krejci, P., Kuhnen, K., “Existence, Uniqueness and L∞-Stability of the Prandtl-Ishlinskii Hysteresis and Creep Compensator”, European Journal of Control, vol. 14, no. 5, pp. 409-417, 2008.
|
|
8. Krejci, P., Kuhnen, K., “Inverse Control of Systems with Hysteresis and Creep”, in Proceedings of Conf. on Control Theory and Applications, pp. 185-192, 2001.
|
|
9. Kuhnen, K., “Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl-Ishlinskii Approach”, European Journal of Control, vol. 9, no. 9, pp. 407-418, 2003.
|
|
10. Lian, J. W., Chen, H. Y., “Feedforward and Feedback Control for Piezoelectric-actuated Systems using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization”, in Proceedings of Conf. on Advanced Mechatronic Systems, pp.313-318, 2014.
|
|
11. Main, J. A., Garcia, E., “Piezoelectric Stack Actuators and Control System Design: Strategies and Pitfalls”, Journal of Guidance Control Dynamics, vol. 20, no. 3, pp. 479-485, 2012.
|
|
12. Mayergoyz, I. D., “Mathematical Models of Hysteresis”, Physical Review Letters, vol. 22, no. 5, pp. 603-608, 1986.
|
|
13. Riccardi, L., Naso, D., Turchiano, B., Janocha, H., “On PID Control of Dynamic Systems with Hysteresis using a Prandtl-Ishlinskii Model”, in Proceedings of American Control Conference, pp. 1670-1675, 2012.
|
|
14. Rizzello, G., Naso, D., York, A., Seelecke, S., “Modeling, Identification, and Control of a Dielectric Electro-Active Polymer Positioning System”, IEEE Transactions on Control Systems Technology, vol. 23, no. 2, pp. 632-643, 2015.
|
|
15. Song, Z., Long, Y., Sun, J., “General on Modeling and Control of Hysteresis Nonlinear System”, Journal of Naval Aeronautical and Astronautical University, vol. 29, no. 6, pp. 528-534, 2014.
|
|
16. Wang, G., Chen, D., Chen, K., Zhang, Z., “The Current Research Status and Development Strategy on Biomimetic Robot”, Journal of Mechanical Engineering, vol. 51, no. 13, pp. 27-44, 2015.
|
|
17. Zhang, J., Iyer, K., Simeonov, A., Yip, M. C., “Modeling and Inverse Compensation of Hysteresis in Supercoiled Polymer Artificial Muscles”, IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 773-780, 2017.
|
|
18. Zheng, J., Wang, Q., Li, Y., “Adaptive Sliding Model Control for Linear Actuator with Hysteresis using a Prandtl-Ishlinskii Model”, in Proceedings of Conf. on Robotics and Biomimetics, pp. 2553-2557, 2015.
|