Int J Performability Eng ›› 2017, Vol. 13 ›› Issue (4): 446-457.doi: 10.23940/ijpe.17.04.p12.446457
• Original articles • Previous Articles Next Articles
Guanglu Suna, b, Shaobo Lia, Yanzhen Caoa, and Fei Langb
Guanglu Sun, Shaobo Li, Yanzhen Cao, and Fei Lang. Cervical Cancer Diagnosis based on Random Forest [J]. Int J Performability Eng, 2017, 13(4): 446-457.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1. J. Albert, E. Aliu, H. Anderhub, P. Antoranz, A. Armada, M. Asensio, and J. Becker, “Implementation of the random forest method for the imaging atmospheric Cherenkov telescope MAGIC,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 588, no. 3, pp. 424-432, 2008 | |
2. A. P. Bradley, “The use of the area under the ROC curve in the evaluation of machine learning algorithms,” Pattern recognition, vol. 30, no. 7, pp. 1145-1159, 1997 | |
3. C. Bergmeir, M. G. Silvente, and J. M. Benítez, “Segmentation of cervical cell nuclei in high-resolution microscopic images: A new algorithm and a web-based software framework,” Computer Methods & Programs in Biomedicine, vol. 107, no. 3, pp.497–512, 2012 | |
4. L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5-32, 2001 | |
5. M. P. Coleman, J. Esteve, P. Damiecki, A. Arslan, and H. Renard, “Trends in cancer incidence and mortality,” IARC scientific publications, 1992. | |
6. P. S. Chandran, N. B. Byju, R. U. Deepak, R. R. Kumar, S. Sudhamony, P. Malm, and E. Bengtsson, “Cluster detection in cytology images using the cellgraph method,” In Information Technology in Medicine and Education (ITME), 2012 International Symposium on, vol. 2, pp. 923-927, August, 2012 | |
7. Y. F. Chen, P. C. Huang, K. C. Lin, H. H. Lin, L. E. Wang, C. C. Cheng, and J. Y. Chiang, “Semi-automatic segmentation and classification of pap smear cells,” IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 1, pp. 94-108, 2014 | |
8. L. Denny, M. Quinn, and R. Sankaranarayanan, “Screening for cervical cancer in developing countries,” Vaccine, 2006 | |
9. R. Díaz-Uriarte and S. A. De Andres, “Gene selection and classification of microarray data using random forest,” BMC bioinformatics, vol. 7, no. 1, pp. 1, 2006 | |
10. R. O. Duda, P. E. Hart, and D. G. Stork, “Pattern classification,” New York: Wiley, vol. 2, 1973 | |
11. A. Gen?tav, S. Aksoy, and S. ?nder, “Unsupervised segmentation and classification of cervical cell images,” Pattern Recognition, vol. 45, no. 12, pp. 4151-4168, 2012 | |
12. R. T. Greenlee, T. Murray, S. Bolden, and P. A. Wingo, “Cancer statistics, 2000,” CA: a cancer journal for clinicians, vol. 50, no. 1, pp. 7-33, 2000 | |
13. D. W. Hosmer Jr and S. Lemeshow, “Applied logistic regression,” John Wiley & Sons, 2004 | |
14. G. Holmes, A. Donkin, and I. H. Witten, Holmes, “Weka: A machine learning workbench.” in Intelligent Information Systems, 1994. Proceedings of the 1994 Second Australian and New Zealand Conference on ,pp. 357-361, December, 1994 | |
15. N. M. Harandi, S. Sadri, N. A. Moghaddam, and R. Amirfattahi, “An automated method for segmentation of epithelial cervical cells in images of ThinPrep,” Journal of medical systems, vol. 34, no. 6, pp. 1043-1058, 2010 | |
16. R. Hummel, “Image enhancement by histogram transformation,” Computer graphics and image processing, vol. 6, no. 2, pp. 184-195, 1977 | |
17. T. K. Ho, “The random subspace method for constructing decision forests,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 20, no. 8, pp. 832-844, 1998 | |
18. T. hankong, N. Theera-Umpon, and S. Auephanwiriyakul, “Automatic cervical cell segmentation and classification in Pap smears,” Computer methods and programs in biomedicine, vol. 113, no. 2, pp. 539-556, 2014 | |
19. A. Jemal, M. M. Center, C. DeSantis, and E. M. Ward, “Global patterns of cancer incidence and mortality rates and trends,” Cancer Epidemiology Biomarkers & Prevention, vol. 19, no. 8, pp. 1893-1907, 2010 | |
20. D. Kong, C. Ding, H. Huang, and H. Zhao, “Multi-label relieff and f-statistic feature selections for image annotation,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 2352-2359, IEEE, June, 2012 | |
21. K. K. Kandaswamy, G. Pugalenthi, M. K. Hazrati, K. U. Kalies and T. Martinetz, “BLProt: prediction of bioluminescent proteins based on support vector machine and relieff feature selection”, BMC bioinformatics, vol. 12, no. 1, pp. 345, 2011 | |
22. M. Khalilia, S. Chakraborty, and M. Popescu, “Predicting disease risks from highly imbalanced data using random forest,” BMC medical informatics and decision making, vol. 11, no. 1, pp. 1, 2011 | |
23. R. R. Kumar, V. A. Kumar, and P. N. Sharath Kumar, “Detection and removal of artifacts in cervical cytology images using support vector machine,” IT in Medicine and Education (ITME), 2011 International Symposium on, vol. 1, pp. 717-721, 2011 | |
24. S. Kumar, L. Jena, K. Mohod, S. Daf, and A. K. Varma, “Virtual screening for potential inhibitors of high-risk human papillomavirus 16 E6 protein,” Interdisciplinary Sciences: Computational Life Sciences, vol. 7, no. 2, pp. 136-142, 2015 | |
25. K. Li, Z. Lu, W. Liu, and J. Yin, “Cytoplasm and nucleus segmentation in cervical smear images using Radiating GVF Snake,” Pattern Recognition, vol. 45, no. 4, pp. 1255-1264, 2012 | |
26. W. Z. Lin, J. A. Fang, X. Xiao, and K. C. Chou, “iDNA-Prot: identification of DNA binding proteins using random forest with grey model,” PloS one, vol. 6, no. 9, pp. e24756, 2011 | |
27. A. Mohan, M. D. Rao, S. Sunderrajan, G. Pennathur, “Automatic classification of protein structures using physicochemical parameters,” Interdisciplinary Sciences: Computational Life Sciences, vol. 6, no. 3, pp. 176-186, 2014 | |
28. A. H. Mbaga, and P. Zhijun, “Pap Smear Images Classification for Early Detection of Cervical Cancer,” International Journal of Computer Applications, vol.118, no. 7, 2015 | |
29. J. H. Moore and B. C. White, “Tuning ReliefF for genome-wide genetic analysis.” in European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, pp. 166-175, April, 2007 | |
30. L. Martin and M. Exbrayat, “Pap-smear classification” Technical University of Denmark-DTU, 2003 | |
31. P. Malm, B. N. Balakrishnan, V. K. Sujathan, R. Kumar, and E. Bengtsson, “Debris removal in Pap-smear images,” Computer methods and programs in biomedicine, vol. 111, no. 1, pp. 128-138, 2013 | |
32. Y. Marinakis, G. Dounias, and J. Jantzen, “Pap smear diagnosis using a hybrid intelligent scheme focusing on genetic algorithm based feature selection and nearest neighbor classification,” Computers in Biology and Medicine, vol. 39, no. 1, pp.69-78, 2009 | |
33. J. Norup, “Classification of Pap-smear data by tranduction neuro-fuzzy methods” Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark, 2005 | |
34. M. Peker, A Arslan, B. Sen, F. V. Celebi, and A. But, “A novel hybrid method for determining the depth of anesthesia level: Combining ReliefF feature selection and random forest algorithm (ReliefF+ RF).” in Innovations in Intelligent SysTems and Applications (INISTA), 2015 International Symposium on, pp. 1-8, September, 2015 | |
35. M. E. Plissiti and C. Nikou, “Cervical cell classification based exclusively on nucleus features,” Image Analysis and Recognition. Springer Berlin Heidelberg, pp. 483-490 ,2012 | |
36. M. E. Plissiti, C. Nikou and, A. Charchanti, “Watershed-based segmentation of cell nuclei boundaries in Pap smear images,” Information Technology and Applications in Biomedicine (ITAB), 2010 10th IEEE International Conference on. pp. 1-4, 2010 | |
37. M. E. Plissiti, C. Nikou, and A. Charchanti, “Automated Detection of Cell Nuclei in Pap Smear Images Using Morphological Reconstruction and Clustering,” IEEE Transactions on Information Technology in Biomedicine A Publication of the IEEE Engineering in Medicine & Biology Society, vol. 15, no .2, pp. 233-241, 2011 | |
38. J. R. Quinlan, “C4.5: programs for machine learning,” Elsevier, 2014 | |
39. M. Robnik-?ikonja and I. Kononenko, “Theoretical and empirical analysis of ReliefF and RReliefF,A” Machine learning, vol.53, no. 1-2, pp. 23-69, 2003 | |
40. P. Sobrevilla, E. Montseny, F. Vaschetto, and E. Lerma, “Fuzzy-based analysis of microscopic color cervical pap smear images: nuclei detection,” International Journal of Computational Intelligence and Applications, vol. 9, no. 03, pp. 187-206, 2010 | |
41. S. Saha, M. Pal, A. Konar, and D. Bhattacharya, “Automatic Gesture Recognition for Health Care Using ReliefF and Fuzzy kNN.” In Information Systems Design and Intelligent Applications, pp. 709-717, 2015 | |
42. S. N. Sulaiman, N. Ashidi, M. Isa, and N. H. Othman, “Semi-automated pseudo colour features extraction technique for cervical cancer's pap smear images,” International Journal of Knowledge-based and Intelligent Engineering Systems, vol. 15, no. 3, pp. 131-143, 2011 | |
43. V.Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, and B. P. Feuston, “Random forest: a classification and regression tool for compound classification and QSAR modeling,” Journal of chemical information and computer sciences, vol. 43, no. 6, pp. 1947-1958, 2003 | |
44. V. M. Valdespino and V. E. Valdespino, “Cervical cancer screening: state of the art,” Current Opinion in Obstetrics and Gynecology, vol. 18, no. 1, pp. 35-40, 2006 | |
45. J. Wu, H. Liu, X. Duan, Y. Ding, H. Wu, Y. Bai, and X. Sun, “Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature,” Bioinformatics, vol. 25, no. 1, pp. 30-35, 2009 | |
46. K. Q. Ye, “Indicator function and its application in two-level factorial designs,” Annals of Statistics, pp. 984-994, 2003 | |
47. J Yue, Z Li, L Liu, and Z. Fu, “Content-based image retrieval using color and texture fused features,” Mathematical and Computer Modelling, vol. 54, no. 3, pp. 1121-1127, 2011 |
No related articles found! |
|