1. Z. Yu, Q. Liu, and G. Liu, “Deeper Cascaded Peak-Piloted Network for Weak Expression Recognition,” The Visual Computer, Vol. 34, No. 12, pp. 1691-1699, 2017 2. S. Ouyang, T. Hospedales, Y. Z. Song,X. Li, “Cross-Modal Face Matching: Beyond Viewed Sketches,” inProceedings of Asian Conference on Computer Vision (ACCV), pp. 210-225, Springer, Cham, 2014 3. B. F. Klare, S. S. Bucak, A. K. Jain,T. Akgul, “Towards Automated Caricature Recognition,” inProceedings of 2012 5th IAPR International Conference on Biometrics (ICB), pp. 139-146, IEEE, 2012 4. B. Abaci and T. Akgul, “Matching Caricatures to Photographs,” Signal, Image and Video Processing, Vol. 9, No. 1, pp. 295-303, December 2015 5. E. J. Crowley, O. M. Parkhi,A. Zisserman, “Face Painting: Querying Art with Photos,” in British Machine Vision Conference (BMVC), pp. 65.1-65.13, 2015 6. J. Huo, W. Li, Y. Shi,H. Yin, “WebCaricature: A Benchmark for Caricature Face Recognition,”arXiv preprint arXiv:1703.03230, 2017 7. K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,”arXiv preprint arXiv:1409.1556, 2014 8. Q. Liu, X. Tang, H. Jin,S. Ma, “A Nonlinear Approach for Face Sketch Synthesis and Recognition,” inProceedings of CVPR 2005 and IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1005-1010, IEEE, 2005 9. X. Tang and X. Wang, “Face Photo Recognition using Sketch,” in Proceedings of International Conference on Image Processing, Vol. 1, pp. I-I, IEEE, 2002 10. B. Klare, Z. Li,A. K. Jain, “Matching Forensic Sketches to Mug Shot Photos,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, No. 3, pp. 639-646, 2011 11. H. S. Bhatt, S. Bharadwaj, R. Singh,M. Vatsa, “Memetic Approach for Matching Sketches with Digital Face Images,” IEEE Transactions on Information Forensics and Security, Vol. 7, No. 5, pp. 1522-1535, 2012 12. D. K.Kotha and S. Rath, “Forensic Sketch Matching using SURF,” inProceedings of International Conference on Advances in Computing, pp. 527-537, Springer, New Delhi, 2013 13. Y. Gong, Q. Ke, M. Isard,S. Lazebnik, “A Multi-View Embedding Space for Modelling Internet Images, Tags, and their Semantics,” International Journal of Computer Vision, Vol. 106, No. 2, pp. 210-233, 2014 14. E. Zhou, Z. Cao,Q. Yi, “Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not?”arXiv preprint arXiv:1501.04690, 2015 15. C. Geng and X. Jiang, “Face Recognition using Sift Features,” inProceedings of 16th IEEE International Conference on Image Processing (ICIP), pp. 3313-3316, 2009 16. K. M. He, X. Y. Zhang, S. Q. Ren,J. Sun, “Deep Residual Learning for Image Recognition,” inProceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016 17. Y. Wen, K. Zhang, Z. Li,Y. Qiao, “A Discriminative Feature Learning Approach for Deep Face Recognition,” inProceedings of European Conference on Computer Vision (CVPR), pp. 499-515, Springer, Cham, 2016 18. K. Zhang, Z. Zhang, Z. Li,Y. Qiao, “Joint Face Detection and Alignment using Multitask Cascaded Convolutional Networks,” IEEE Signal Processing Letters, Vol. 23, No. 10, pp. 1499-1503, 2016 19. W. AbdAlmageed, Y. Wu, S. Rawls, S. Harel, T. Hassner, I. Masi, et al., “Face Recognition using Deep Multi-Pose Representations,” in Proceedings of 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1-9, 2016 20. V. Franc and V. Hlavác, “Multi-Class Support Vector Machine,” in Proceedings of 2002 16th International Conference on Pattern Recognition, Vol. 2, pp. 236-239, IEEE, 2002 |