1. J. R. Xue, J. W. Fang, and P. Zhang, “A Survey of Scene Understanding by Event Reasoning in Autonomous Driving,” nternational Journal of Automation and Computing , Vol. 15, No. 3, pp. 1-18, 2018 2. G. Hinton, S. Osindero, M. Welling,Y. W. Teh, “Unsupervised Discovery of Nonlinear Structure using Contrastive Backpropagation,” Cognitive Science, Vol. 30, No. 4, pp. 725-731, 2006 3. J. R. Bai, J. F. Wang,Z. Q. Zhao, “Malware Detection Approach based on Structural Feature of PE File,” Computer Science, Vol. 40, No. 1, pp. 122-126, 2013 4. A. Moser, C. Kruegel,E. Kirda, “Limits of Static Analysis for Malware Detection,” inProceedings of Twenty-third Annual Computer Security Applications Conference, pp. 421-430, 2007 5. M. Egele, T. Scholte, E. Kirda,C. Kruegel, “A Survey on Automated Dynamic Malware-Analysis Techniques and Tools,” ACM Computing Surveys, Vol. 44, No. 2, pp. 1-42, 2012 6. U. Bayer, A. Moser, C. Kruegel,E. Kirda, “Dynamic Analysis of Malicious Code,” Journal in Computer Virology, Vol. 2, No. 1, pp. 67-77, 2006 7. C. Willems, T. Holz,F. Freiling, “Toward Automated Dynamic Malware Analysis using CWsandbox,” IEEE Security & Privacy, Vol. 5, No. 2, pp. 32-39, 2007 8. F. Ahmed, H. Hameed, M. Z. Shafiq,M. Farooq, “Using Spatio-Temporal Information in API Calls with Machine Learning Algorithms for Malware Detection,” inProceedings of ACM Workshop on Security and Artificial Intelligence, pp. 55-62, 2009 9. J. Ouellette, A. Pfeffer,A. Lakhotia, “Countering Malware Evolution using Cloud-Based Learning,” inProceedings of International Conference on Malicious and Unwanted Software, pp. 85-94, 2013 10. W. Rui, D. G. Feng, Y. Yi,S. U.Pu-Rui, “Semantics-based Malware Behavior Signature Extraction and Detection Method,” Journal of Software, Vol. 23, No. 2, pp. 378-393, 2012 11. Y. Li, R. Ma,R. Jiao, “A Hybrid Malicious Code Detection Method based on Deep Learning,” International Journal of Software Engineering and its Applications, Vol. 9, No. 5, pp. 205-216, 2015 12. L. I.Chun-Lin, Y. J. Huang, H. Wang, and C. X. Niu, “Detection of Network Intrusion based on Deep Learning,” inProceedings of Information Security & Communications Privacy 13. J. Watson, “VirtualBox: Bits and Bytes Masquerading as Machines,” Linux Journal, Vol. 2008, No. 166, 2008 14. F. Bellard, “QEMU, A Fast and Portable Dynamic Translator,” in Proceedings of USENIX Annual Technical Conference, FREENIX Track, pp. 41-44, 2005 15. C. Guarnieri, A. Tanasi, J. Bremer,M. Schloesser, “The Cuckoo Sandbox,” (http://cuckoosandbox.org, 2012 16. J. Choi, H. Kim, C. Choi,P. Kim, “Efficient Malicious Code Detection using N-gram Analysis and SVM,” inProceedings of the 14th International Conference on Network-based Information Systems, Vol. 16, pp. 618-621, 2011 17. E. Raff, R. Zak, R. Cox, J. Sylvester, P. Yacci, R. Ward, et al., “An Investigation of Byte N-gram Features for Malware Classification,” Journal of Computer Virology and Hacking Techniques, Vol. 14, No. 1, pp. 1-20, 2018 18. R. Moskovitch, C. Feher, N. Tzachar, E. Berger, M. Gitelman, S. Dolev, et al., “Unknown Malcode Detection using OPCODE Representation,” inProceedings of the First European Conference on Intelligence and Security Informatics, Vol. 5376, pp. 204-215, 2008 19. A. A. E.Elhadi, M. A. Maarof, and A. H. Osman, “Malware Detection based on Hybrid Signature Behaviour Application Programming interface Call Graph,” American Journal of Applied Sciences, Vol. 9, No. 3, pp. 283-288, 2012 20. P. Faruki, V. Laxmi, M. S. Gaur,P. Vinod, “Mining Control Flow Graph as API Call-Grams to Detect Portable Executable Malware,” inProceedings of the Fifth International Conference on Security of Information and Networks, pp. 130-137, ACM, October, 2012 21. B. Anderson, D. Quist, J. Neil, C. Storlie,T. Lane, “Graph-based Malware Detection using Dynamic Analysis,” Journal in Computer Virology, Vol. 7, No. 4, pp. 247-258, 2011 22. S. Alam, I. Traore,I. Sogukpinar, “Annotated Control Flow Graph for Metamorphic Malware Detection.,” The Computer Journal, Vol. 58, No. 10, pp. 2608-2621, 2015 23. Y. Cao, Q. Miao, J. Liu,L. Gao, “Abstracting Minimal Security-Relevant Behaviors for Malware Analysis,” Journal of Computer Virology and Hacking Techniques, Vol. 9, No. 4, pp. 193-204, 2013 24. G. E. Hinton, “Learning Distributed Representations of Concepts,” in Proceedings of the Eighth Annual Conference of the Cognitive Science Society, Vol. 1, pp. 12, 1986 25. A. Mnih and G. Hinton, “Three New Graphical Models for Statistical Language Modeling,” inProceedings of International Conference on Machine Learning, pp. 641-648, ACM, 2007 26. A. Mnih and G. E. Hinton, “A Scalable Hierarchical Distributed Language Model,”Advances in Neural Information Processing Systems, pp. 1081-1088, 2009 27. R. Socher, C. D. Manning,A. Y. Ng, “Learning Continuous Phrase Representations and Syntactic Parsing with Recursive Neural Networks,” inProceedings of the NIPS-2010 Deep Learning and Unsupervised Feature Learning Workshop, Vol. 2010, pp. 1-9, 2010 28. R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, et al., “Recursive Deep Models for Semantic Compositionality over a Sentiment Treebank,” in Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631-1642, 2013 |