1. J. Pearl, “Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,” Morgan Kaufmann Publishers, San Mateo, California, 1988 2. L. W.Zhang and H. P. Guo, “Introduction to Bayesian Networks,” Science Press, 2006 3. Y. W.Park and D. Klabjan, “Bayesian Network Learning via Topological Order,”Journal of Machine Learning Research, Vol. 18, pp. 1-32, 2017 4. M. Scanagatta, G. Corani, C. P. de Campos, and M. Zaffalon, “Approximate Structure Learning for Large Bayesian Networks,”Machine Learning, Vol. 107, pp. 1209-1227, 2018 5. R. Mateescu, K. Kask, V. Gogate,R. Dechter, “Join-Graph Propagation Algorithms,”Journal of Artificial Intelligence Research, Vol. 37, pp. 279-328, 2010 6. C. J. Butz, J. S. Oliveira, A. E. D.Santos, and A. L. Madsen, “Inference with Simple Propagation,” inProceedings of JMLR Workshop and Conference Proceedings, Vol. 52, pp. 62-73, 2016 7. B. M. Lake, R. Salakhutdinov,J. B. Tenenbaum, “Human-Level Concept Learning Through Probabilistic Program Induction,” Science, Vol. 350, No. 6266, pp. 1332-1338, 2015 8. D. George, W. Lehrach, K. Kansky, M. Lázaro-Gredilla, C. Laan, B. Marthi, et al., “A Generative Vision Model that Trains with High Data Efficiency and Breaks Text-based CAPTCHAS,” Science, Vol. 358, No. 6368, 2017 9. X. Ma, T. Zhao, R. S. Wen, Z. J. Wu,Q. Wang, “Motion Recognition based on Concept Learning,” inProceedings of IEEE International Conference on Instrumentation and Measurement Technology (I2MTC), pp. 1-6, 2017 10. K. P. Murphy, “Machine Learning: A Probabilistic Perspective,” MIT Press, 2012 11. D. Koller and N. Friedman, “Probabilistic Graphical Models: Principles and Techniques,” MIT Press, 2009 12. H. LähdesmLäki and I. Shmulevich, “Learning the Structure of Dynamic Bayesian Networks from Time Series and Steady State Measurements,”Machine Learning, Vol. 71, pp. 185-217, 2008 13. C. P. de Camposab, M. Scanagatta, G. Corani, and M. Zaffalon, “Entropy-based Pruning for Learning Bayesian Networks Using BIC,”Artificial Intelligence, Vol. 260, pp. 42-50, 2018 14. M. Scutari, “Learning Bayesian Networks with the Bnlearn R Package,” Journal of Statistical Software, Vol. 35, No. 3, pp. 1-22, 2010 |