1. B. Buchli, “GPS-Equipped Wireless Sensor Network Node for High-Accuracy Positioning Applications,” in Proceedings of the 9th European Conference on Wireless Sensor Networks, pp. 179-195, Trento, Italy, 2012 2. S. N.He and S. -H. G. Chan, “Wi-Fi Fingerprint-based Indoor Positioning: Recent Advances and Comparisons,” IEEE Communications Surveys & Tutorials, Vol. 18, No. 1, pp. 466-490, 2017 3. A. K. M.M. Hossain and W. S. Soh, “A Survey of Calibration-Free Indoor Positioning Systems,” Computer Communications, Vol. 66, No. 15, pp. 1-13, July 2015 4. L. Z.Qiu and C. Liu, “An Improved Weighted K-Nearest Neighbor Algorithm for Indoor Positioning,” Wireless Personal Communications, Vol. 96, No. 2, pp. 1-13, September 2017 5. A. W. Tsui, Y. H. Chuang,H. H. Chu, “Unsupervised Learning for Solving RSS Hardware Variance Problem in WiFi Localization,” Mobile Networks & Applications, Vol. 14, No. 5, pp. 677-691, October 2009 6. H. Cheng, F. Wang, R. Tao, H. Luo,F. Zhao, “Clustering Algorithms Research for Device-Clustering Localization,” inProceedings of International Conference on Indoor Positioning and Indoor Navigation IEEE, pp. 1-7, Sydney, NSW, Australia, 2012 7. J. G. Park, D. Curtis, S. Teller,J. Ledlie, “Implications of Device Diversity for Organic Localization,” inProceedings of 2011 IEEE INFOCOM, pp. 3182-3190, Shanghai, China. April 2011 8. L. H. Chen, H. K. Wu, M. H. Jin,G. H. Chen, “Homogeneous Features Utilization to Address the Device Heterogeneity Problem in Fingerprint Localization,” IEEE Sensors Journal, Vol. 14, No. 4, pp. 998-1005, November 2014 9. C. Laoudias, D. Zeinalipour-Yazti,C. G. Panayiotou, “Crowdsourced Indoor Localization for Diverse Devices Through Radiomap Fusion,” inProceedings of International Conference on Indoor Positioning and Indoor Navigation, pp. 1-7, Montbeliard-Belfort, France, 2013 10. C. Laoudias and C. G. Panayiotou, “Device Self-Calibration in Location Systems using Signal Strength Histograms,” Journal of Location Based Services, Vol. 7, No. 3, pp. 165-181, September 2013 11. C. Figuera, “Time-Space Sampling and Mobile Device Calibration for WiFi Indoor Location Systems,” IEEE Transactions on Mobile Computing, Vol. 10, No. 7, pp. 913-926, May 2011 12. A. Haeberlen, E. Flannery, A. M. Ladd, A. Rudys, D. S. Wallach,L. E. Kavraki, “Practical Robust Localization over Large-Scale 802.11 Wireless Networks,” inProceedings of the 10th Annual International Conference on Mobile Computing and Networking, pp. 70-84, 2004 13. F. Dong, Y. Chen, J. Liu, Q. Ning,S. Piao, “A Calibration Free Localization Solution for Handling Signal Strength Variance,”Mobile Entity Localization and Tracking in GPS less Environments, Springer Berlin Heidelberg, pp. 79-90, 2009 14. M. B. Kjærgaard, “Indoor Location Fingerprinting with Heterogeneous Clients,” Pervasive and Mobile Computing, Vol. 7, No. 1, pp. 31-43, February 2010 15. M. B. Kjærgaard, “Hyperbolic Location Fingerprinting: A Calibration-Free Solution for Handling Differences in Signal Strength,” inProceedings of 2008 Sixth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 110-116, Hong Kong, China, 2008 16. A. K. M. M. Hossain, Y. Jin, W. S. Soh,H. N. Van, “SSD: A Robust RF Location Fingerprint Addressing Mobile Devices’ Heterogeneity,” IEEE Transactions on Mobile Computing, Vol. 12, No. 1, pp. 65-77, Jan. 2013 17. M. F. M.Mohsin, A. R. Hamdan, and A. A. Bakar, “The Effect of Normalization for Real Value Negative Selection Algorithm,” inProceedings of International Multi-Conference on Artificial Intelligence Technology, pp. 194-205, 2013 |