1. |
M. R. Minar and J. Naher, “Recent Advances in Deep Learning: An Overview,” arXiv:1807.08169, 2018
|
2. |
R. David, H. Geoffrey,W. Ronald, “Learning Representations by Back-Propagating Errors,”Nature, Vol. 323, pp. 533-536, 1986
|
3. |
Y. Lecun, L. Bottou, Y. Bengio,P. Haffner, “Gradient-based Learning Applied to Document Recognition?” inProceedings of the IEEE 86.11, pp. 2278-2324, 1998
|
4. |
A. Odena and I. Goodfellow, “TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing,” arXiv:1807.10875, 2018
|
5. |
J. Guo, Y. Jiang, Y. Zhao, Q. Chen,J. Sun, “DLFuzz: Differential Fuzzing Testing of Deep Learning Systems,” arXiv:1808.09413, 2018
|
6. |
M. Wicker, X. Huang,M. Kwiatkowska, “Feature-Guided Black-Box Safety Testing of Deep Neural Networks,” arXiv:1710.07859, 2017
|
7. |
M. Zalewski, “American Fuzzy Lop,” (http://lcamtuf.coredump.cx/afl/
|
8. |
D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International Journal of Computer Vision, Vol. 60, No. 2, pp. 91-110, 2004
|
9. |
K. Pei, Y. Cao, J. Yang,S. Jana, “Deepxplore: Automated Whitebox Testing of Deep Learning Systems,” arXiv:1705.06640, 2017
|
10. |
G. Bradski, “The OpenCV Library,”Dr. Dobbs Journal of Software Tools, pp. 120-125, 2000
|
11. |
Y. LeCun, “The MNIST Database of Handwritten Digits,” (http://yann.lecun.com/exdb/mnist/, 2018
|
12. |
K. Serebryany, “Continuous Fuzzing with Libfuzzer and Addresssanitizer?” in Proceedings of2016 IEEE Cybersecurity Development (SecDev), pp. 157-157, 2016
|
13. |
M. Bohme, V. Pham,A. Roychoudhury, “Coverage-based Greybox Fuzzing as Markov Chain?” in Proceedings of the2016 ACM SIGSAC Conference on Computer and Communications Security CCS, pp. 1032-1043, 2016
|
14. |
S. Gu and L. Rigazio, “Towards Deep Neural Network Architectures Robust to Adversarial Examples,” arXiv:1412.5068, 2014
|
15. |
X. Huang, M. Kwiatkowska, S. Wang,M. Wu, “Safety Verification of Deep Neural Networks?” inProceedings of International Conference on Computer Aided Verification, pp. 3-29, Springer, 2017
|
16. |
L. Ma, F. Juefei-Xu, J. Sun, C. Chen, T. Su, F. Zhang, et al., “Deepgauge: Comprehensive and Multi-Granularity Testing Criteria for Gauging the Robustness of Deep Learning Systems,” arXiv:1803.07519, 2018
|
17. |
Y. Sun, X. Huang,D. Kroening, “Testing Deep Neural Networks,” arXiv:1803.04792, 2018
|
18. |
K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski,L. K. Rierson, “A Practical Tutorial on Modified Condition/Decision Coverage,” Vol. 210876, DIANE Publishing, 2001
|
19. |
Y. Tian, K. Pei, S. Jana,B. Ray, “Deeptest: Automated Testing of Deep-Neural-Network-Driven Autonomous Cars,” arXiv:1708.08559, 2017
|
20. |
Y. Sun, “Concolic Testing for Deep Neural Networks,” inProceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, pp. 109-119, 2018
|
21. |
X. Xie, L. Ma, F. Xu, M. Xue, H. Chen, Y. Liu, et al., “DeepHunter: A Coverage-Guided Fuzz Testing Framework for Deep Neural Networks,” inProceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 146-157, ACM, 2019
|
22. |
N. Nicole, M. Raugas, R. Jasper,N. Hilliard, “Faster Fuzzing: Reinitialization with Deep Neural Models,” arXiv:1711.02807, 2017
|