1. |
Y. Song, H. Z. Wang, J. Z. Li,H. Gao, “MapReduce for Big Data Analysis: Benefits, Limitations and Extensions,” in Proceedings of International Conference of Pioneering Computer Scientists,Engineers and Educators, pp. 453-457, 2016
|
2. |
Ö. M. Soysal, E. Gupta,H. Donepudi, “A Sparse Memory Allocation Data Structure for Sequential and Parallel Association Rule Mining,” The Journal of Supercomputing, Vol. 72, No. 2, pp. 347-370, 2016
|
3. |
C. W. Lin, W. Gan, P. Fournier-Viger,T. P. Hong, “Efficient Mining of Weighted Frequent Itemsets in Uncertain Databases,” in Proceedings of 12th International Conference, pp. 236-250, Springer International Publishing, 2016
|
4. |
M. R. Karim, M. Cochez, O. D. Beyan, C. F. Ahmed,S. Decker, “Mining Maximal Frequent Patterns in Transactional Databases and Dynamic Data Streams: A Spark-based Approach,”Information Sciences, Vol. 432, pp. 278-300, 2018
|
5. |
C. K. Chui, B. Kao,H. Edword, “Mining Frequent Itemsets from Uncertain Data,” in Proceedings of 11th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, Vol.4426, pp. 47-58, Springer-Verlag, Nanjing, China, 2007
|
6. |
C. H. Chee, J. Jaafer, A. Izzatdin, M. H. Hasan,W. Yeoh, “Algorithms for Frequent Itemset Mining: A Literature Review,” Artificial Intelligence Review, Vol. 36, No. 3, pp. 1-9, 2018
|
7. |
L. Wang, D. W. Cheung, R. Cheung, S. D. Lee,X. Yang, “Efficient Mining of Frequent Item Sets on Large Uncertain Datasets,” IEEE Transactions on Knowledge and Data Engineering, Vol. 24, No. 12, pp. 2170-2183, 2012
|
8. |
X. Sun, L. Lim,S. Wang, “An Approximation Algorithm of Mining Frequent Itemsets from Uncertain Dataset,” International Journal of Advancements in Computing Technology, Vol. 4, No. 3, pp. 42-49, 2012
|
9. |
C. K. Leung, C. L. Carmicheal,B. Hao, “Efficient Mining of Frequent Patterns from Uncertain Data,” inProceedings of 17th IEEE International Conference on Data Mining Workshops, pp. 489- 494, IEEE Computer Society, Washington, DC, USA, 2007
|
10. |
W. L.Chun and P. H. Tzung, “A New Mining Approach for Uncertain Datasets using CUFP-Trees,” Expert Systems with Applications, Vol. 39, No. 4, pp. 4084-4093, 2012
|
11. |
T. Bernecker, H. P. Kriegel, M. Renz, F. Verhein,A. Zufle, “Probabilistic Frequent Itemset Mining in Uncertain Datasets,” inProceedings of 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 119-128, ACM, Paris, France, 2009
|
12. |
L. Sun, R. Cheng, D. W. Cheung,J. Cheng, “Mining Uncertain Data with Probabilistic Guarantees,” inProceedings of 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 273-282, New York, NY, USA: Kdd, 2010
|
13. |
U. Yun and J. J. Leggett, “WFIM: Weighted Frequent Itemset Mining with a Weight Range and a Minimum Weight,” inProceedings of Siam International Conference on Data Mining, pp. 636-640, 2005
|
14. |
U. Yun and J. Leggett, “WSpan: Weighted Sequential Pattern Mining in Large Sequential Datasets,” inProceedings of 3th International IEEE Conference on Intelligent Systems, pp. 512-517, IEEE, London, UK, 2006
|
15. |
G. C. Lan, T. P. Hong, Y. L. Hong, S. L. Wang,C. W. Tsai, “Enhancing the Efficiency in Mining Weighted Frequent Itemsets,” in Proceedings of the2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1104-1108, 2013
|
16. |
C. W. Lin, W. Gan, P. Fournier-Viger,T. P. Hong, “RWFIM: Recent Weighted-Frequent Itemsets Mining,”Engineering Applications of Artificial Intelligence, Vol. 45, pp. 18-32, 2015
|
17. |
C. W. Lin, W. Gan, P. Fournier-Viger, H. C. Chao,T. P. Hong, “Efficiently Mining Frequent Itemsets with Weight and Recency Constraints,” Applied Intelligence, Vol. 47, No. 3, pp. 769-792, 2017
|
18. |
C. W. Lin, W. Gan, P. Fournier-Viger, T. P. Hong,V. S. Tseng, “Weighted Frequent Itemset Mining over Uncertain Datasets,” Applied Intelligence, Vol. 44, No. 1, pp. 232-250, 2016
|
19. |
H. Qiu, R. Gu, C. Yuan,Y. Huang, “YAFIM: A Parallel Frequent Itemset Mining Algorithm with Spark,” IEEE International Parallel and Distributed Processing Symposium Workshops, IEEE Computer Society, Washington, DC, USA, pp. 1664-1671, 2014
|
20. |
S. Rathee, A. Kashyap,M. Kaul, “R-Apriori: An Efficient Apriori based Algorithm on Spark,”The 8th Workshop on Ph.D. Workshop in Information and Knowledge Management, pp. 27-34, ACM, Melbourne, Australia, 2015
|
21. |
K. K.Sethi and D. Ramesh, “HFIM: A Spark-based Hybrid Frequent Itemset Mining Algorithm for Big Data Processing,”Journal of Supercomputing, Vol. 73, pp. 1-17, 2017
|