1. Macqueen J.“Some Methods for Classification and Analysis of Multi Variate Observations”,ProcofBerkeley Symposium on Mathematical Statistics and Probability, pp. 281-297, 1967. 2. AnilK J. “Data Clustering:50yearsbeyond K-Means”, PatternRecognitionLetters, Vol.31, No.8, pp. 651-666,2010. 3. YI Hong, Sam K.“Learning assignment order of instances for the constrained k-means clustering algorithm”,IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,Vol.39, No.2, pp. 568-574,2009. 4. D. Q. Zhang, S. C. Chen.“A novel kernelized fuzzy c-means algorithm with application in medical image segmentation”, Artificial intelligence in medicine, vol. 32, no. 1, pp. 37-50, 2004. 5. Na S, Xu Min L, Yong G.“Research on k-means clustering algorithm: An improved k-means clustering algorithm”. 2010 Third International Symposium on intelligent information technology and security informatics.IEEE, pp.63-67.2010. 6. Yao H, Duan Q, Li D, et al.“An improved K-means clustering algorithm for fish image segmentation”,Mathematical and Computer Modelling, Vol. 58, No.3, pp. 790-798,2013. 7. Rodriguez A.& Laio, A. “Clustering by fast search and find of density peaks”, Science, Vol.344, No.6191, pp. 1492-1496,2014. 8. Zhou Y., Zhao T., Wang Y., Wu, J. i Zhou, X.“A Linear Fitting Density Peaks Clustering Algorithm for Image Segmentation”,Tehnički jesnik, Vol.25, No.3, pp. 808-812.,2017. 9. D M.“Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation”,Powers, 2011. 10. Cheng H. D., Jiang X., Sun Y., & Wang, J. “Colorimage segmentation: advances and prospects”, Patternrecognition, Vol.34, No.12, pp. 2259-2281,2001. 11. Sona Wane, M. S. & Dhawale, C.A. “A Brief Surveyon Image Segmentation Methods”,Foundation of ComputerScience, DISP, Nol.1, pp. 1-5.,2015. 12. Chandhok C., Chaturvedi S., Khurshid A.“Anapproach to image segmentation using K-means clusteringalgorithm.”, International Journal of InformationTechnology, Vol.1, No.1, pp. 11-17,2012. 13. Y. Lin, Y. Li, X. Yin, et al.“Multisensor Fault Diagnosis Modeling Based on the Evidence Theory”,IEEE Transactions on Reliability, Vol.67, No.2, pp.513-521, 2018. 14. Y. Lin, X. Zhu, Z. Zheng, et al.“The individual identification method of wireless device based on dimensionality reduction and machine learning”,Journal of Supercomputing, No.5, pp.1-18, 2017. 15. Y. Tu, Y. Lin, J. Wang, et al.“Semi-Supervised Learning with Generative Adversarial Networks on Digital Signal Modulation Classification”, CMC-Computers Materials & Continua, Vol.55, No.2, pp.243-254, 2018. 16. Y. Lin, C. Wang, J. X. Wang, Z. Dou.“A Novel Dynamic Spectrum Access Framework Based on Reinforcement Learning for Cognitive Radio Sensor Networks”, Sensors, Vol.16, No10, pp.1675, 2016. |