Int J Performability Eng ›› 2020, Vol. 16 ›› Issue (7): 1008-1018.doi: 10.23940/ijpe.20.07.p3.10081018
Previous Articles Next Articles
Carl Wilhjelma, Taslima Kotadiyaa, and Awad A. Younisb,*
Submitted on
;
Revised on
;
Accepted on
Contact:
* E-mail address: mussaa1@nku.edu
Carl Wilhjelm, Taslima Kotadiya, and Awad A. Younis. Empirical Characterization of the Likelihood of Vulnerability Discovery [J]. Int J Performability Eng, 2020, 16(7): 1008-1018.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1. B. Martin, “Common Weakness Scoring System (CWSS),” The Mitre Corporation, June 2011 2. OWASP Risk Rating Methodology,(https://owasp.org/www-community/OWASP_Risk_Rating_Methodology, accessed May 20 2020) 3. A. Younis, Y. K. Malaiya,I. Ray, “Assessing Vulnerability Exploitability Risk using Software Properties,” 4. M. Bozorgi, L. K. Saul, S. Savage,G. M. Voelker, “Beyond Heuristics: Learning to Classify Vulnerabilities and Predict Exploits,” in 5. S. F. Accenture, B. P. E.Zurich, and B. T. E. Zurich, “Modeling the Security Ecosystem-The Dynamics of (In)Security PRIvacy-Aware Secure Monitoring (PRISM) View Project BETEUS View Project,” 6. S. Frei, M. May, U. Fiedler,B. Plattner, “Large-Scale Vulnerability Analysis,” in 7. L. Allodi and F. Massacci, “A Preliminary Analysis of Vulnerability Scores for Attacks in Wild: The EKITS and SYM Datasets,” in 8. K. Nayak, D. Marino, P. Efstathopoulos, and T. Dumitraş, “Some Vulnerabilities are Different than Others: Studying Vulnerabilities and Attack Surfaces in the Wild,” in 9. C. Sabottke, O. Suciu, T. Dumitraş,T. Dumitras, “Vulnerability Disclosure in the Age of Social Media: Exploiting Twitter for Predicting Real-World Exploits,” in 10. A. Younis, Y. K. Malaiya, C. Anderson,I. Ray, “To Fear or Not to Fear that is the Question: Code Characteristics of a Vulnerable Function with an Existing Exploit,” in 11. A. Younis, Y. K. Malaiya, and I. Ray, “Using Attack Surface Entry Points and Reachability Analysis to Assess the Risk of Software Vulnerability Exploitability,” in 12. M. McQueen, T. McQueen, W. Boyer,M. Chaffin, “Empirical Estimates and Observations of 0day Vulnerabilities,” (https://ieeexplore.ieee.org/abstract/document/4755605/?casa_token=gf4z5-32oO0AAAAA:6pl3f2yzMR9fGaYm0ap_lXafVqQ CCO4qNiIWl9qzBhxdaEBk2MyATwANDYDzD_LT0hfea8AshQ, accessed January 2009) 13. NVD - Home, (https://nvd.nist.gov/, accessed May 21 2020) 14. O. S.-S, “Guidelines for Security Vulnerability Reporting and Response. c2004,” (http://www.oisafety. org/guidelines/Guidelines, accessed May 21 2020 15. The CERT Division | Software Engineering Institute,(https://www.sei.cmu.edu/about/divisions/cert/index.cfm, accessed May 21 2020) 16. W. Arbaugh, W. Fithen,J. McHugh, “Windows of Vulnerability: A Case Study Analysis,” (https://ieeexplore.ieee.org /abstract/document/889093/?casa_token=Cp2JuRWLF5EAAAAA:7jNmY5s8n5WgsHYItCvV-vnjoWpaB_eOZxqYY-71gXesT6yn6Gw85MFKS04Lrd59s46PjPWUmg, accessed December 2000) 17. P. Mell, K. Scarfone,S. Romanosky, “A Complete Guide to the Common Vulnerability Scoring System Version 2.0,” (http://www.first.org/cvss/cvss-guide.pdf, accessed June 2007 18. CWE - Common Weakness Enumeration,(https://cwe.mitre.org/, accessed May 21 2020) 19. M. Hafiz and M. Fang, “Game of Detections: How are Security Vulnerabilities Discovered in the Wild?” 20. Google Chrome Version History - Wikipedia,(https://en.wikipedia.org/wiki/Google_Chrome_version_history, accessed May 21 2020) 21. Chrome Releases, (https://chromereleases.googleblog.com/, accessed May 21 2020) 22. Welcome! - The Apache HTTP Server Project,(https://httpd.apache.org/, accessed May 21 2020) 23. Apache HTTP Server - Wikipedia,(https://en.wikipedia.org/wiki/Apache_HTTP_Server, accessed May 21, 2020) 24. S. -C. -G, Newsletter and undefined 2000, “Full Disclosure and the Window of Exposure,” (https://www.mendeley.com /catalogue/fceceeb1-8021-30a1-aac6-0da5b105200b/, accessed June 2014) 25. S. Muegge and S. Murshed, “Time to Discover and Fix Software Vulnerabilities in Open Source Software Projects: Notes on Measurement and Data Availability,” (https://ieeexplore.ieee.org/abstract/document/8481833/?casa_token=_AOGGP7YAnsAA AAA:Agnz012T8OxA1Dh7YIbuy_PcujWbWvkDst89Wdyo7ha-ftHXn9Y2ebP5Ccr_xRuD9TP-spJmHg, accessed October 2018) 26. H. Joh and Y. K. Malaiya, “Defining and Assessing Quantitative Security Risk Measures Using Vulnerability Lifecycle and CVSS Metrics,” (http://www.cs.colostate.edu/~malaiya/p/johrisk11.pdf, accessed May 22 2020 27. T. Sommestad, H. Holm,M. Ekstedt, “Effort Estimates for Vulnerability Discovery Projects,” (https://ieeexplore.ieee.org/ abstract/document/6149570/?casa_token=ohd5jKeIcGkAAAAA: oNn-H1sJjUJwmTo-Kea6RX47pomKJ-yQt0iZckT3uTnMFC 9Tgin_rYQkXtJsWguIdhNMSZTRug, accessed February 2012) 28. H. Holm, M. Ekstedt,T. Sommestad, “Effort Estimates on Web Application Vulnerability Discovery,” (https://ieeexplore.ieee.org/abstract/document/6480453/?casa_token=7HDCaZgP05gAAAAA:P5pu2w0RwFa77WSSea1hgRu0UkwRE5BZhL9PLtqg0skzoi1sh0midPinDyN16Z2I3wdDQ1IDpA, accessed March 2013) 29. An Empirical Study of Vulnerability Rewards Programs - Google Scholar,(https://scholar.google.com/scholar?hl= en&as_sdt=0%2C11&q=An+empirical+study+of+vulnerability+rewards+programs&btnG=, accessed May 22 2020) 30. A. Younis, Y. K. Malaiya,I. Ray, “Evaluating CVSS base Score using Vulnerability Rewards Programs,” 31. YEARFRAC Function - Office Support,(https://support.office.com/en-us/article/yearfrac-function-3844141e-c76d-4143-82b6-208454ddc6a8, accessed May 25 2020) 32. A. M.De Guyon, “An Introduction to Variable and Feature Selection André Elisseeff,” (http://www.jmlr.org/papers/v3/ guyon03a.html, accessed 2003 33. M. Zhao, J. Grossklags,P. Liu, “An Empirical Study of Web Vulnerability Discovery Ecosystems,” in 34. L. Glanz, S. Schmidt, S. Wollny,B. Hermann, “A Vulnerability's Lifetime: Enhancing Version Information in CVE Databases,” in |
[1] | C. Rohith Bhat and Madhusundar Nelson. Artificial Intelligence Based Credit Card Fraud Detection for Online Transactions Optimized with Sparrow Search Algorithm [J]. Int J Performability Eng, 2023, 19(9): 624-632. |
[2] | Savita Khurana, Gaurav Sharma, and Bhawna Sharma. Hybrid Machine Learning Model for Load Prediction in Cloud Environment [J]. Int J Performability Eng, 2023, 19(8): 507-515. |
[3] | K. Eswara Rao, Bala Murali Pydi, T. Panduranga Vital, P. Annan Naidu, U. D. Prasann, and T. Ravikumar. An Advanced Machine Learning Approach for Student Placement Prediction and Analysis [J]. Int J Performability Eng, 2023, 19(8): 536-546. |
[4] | Babaljeet Kaur and Shalli Rani. Are the Customers Receiving Exact Recommendations from the E-Commerce Companies? Towards the Identification of Gray Sheep Users Using Personality Parameters [J]. Int J Performability Eng, 2023, 19(7): 425-433. |
[5] | Kshitij Kumar Sinha, Manoj Mathur, and Arun Sharma. Suitability Index Prediction for Residential Apartments Through Machine Learning [J]. Int J Performability Eng, 2023, 19(7): 434-442. |
[6] | Manpreet Kaur and Shalli Rani. Recommender System: Towards Identification of Shilling Attacks in Rating System Using Machine Learning Algorithms [J]. Int J Performability Eng, 2023, 19(7): 443-451. |
[7] | Srishti Bhugra and Puneet Goswami. Exploratory Review of Machine Learning-Based Software Component Reusability Prediction [J]. Int J Performability Eng, 2023, 19(7): 452-461. |
[8] | Harsha Gaikwad, Sanil Gandhi, Arvind Kiwelekar, and Manjushree Laddha. Analyzing Brain Signals for Predicting Students’ Understanding of Online Learning: A Machine Learning Approach [J]. Int J Performability Eng, 2023, 19(7): 462-470. |
[9] | Rakesh Kumar, Sunny Arora, Ashima Arya, Neha Kohli, Vaishali Arya, and Ekta Singh. Ensemble Learning for Appraising English Text Readability using Gompertz Function [J]. Int J Performability Eng, 2023, 19(6): 388-396. |
[10] | Pranshu Kumar Soni and Leema Nelson. PCP: Profit-Driven Churn Prediction using Machine Learning Techniques in Banking Sector [J]. Int J Performability Eng, 2023, 19(5): 303-311. |
[11] | Ramneet Kaur, Deepali Gupta, and Mani Madhukar. Learner-Centric Hybrid Filtering-Based Recommender System for Massive Open Online Courses [J]. Int J Performability Eng, 2023, 19(5): 324-333. |
[12] | Mahima Yadav and Ishan Kumar. Image Processing-Based Transliteration from Hindi to English [J]. Int J Performability Eng, 2023, 19(5): 334-341. |
[13] | Harshita Batra and Leema Nelson. DCADS: Data-Driven Computer Aided Diagnostic System using Machine Learning Techniques for Polycystic Ovary Syndrome [J]. Int J Performability Eng, 2023, 19(3): 193-202. |
[14] | Shobhanam Krishna and Sumati Sidharth. AI-Powered Workforce Analytics: Maximizing Business and Employee Success through Predictive Attrition Modelling [J]. Int J Performability Eng, 2023, 19(3): 203-215. |
[15] | Bhagirath, Neetu Mittal, and Sushil Kumar. Impact of Real Time Fraud Prevention on Online Resale Platform using Machine Learning and Device Fingerprint Techniques [J]. Int J Performability Eng, 2023, 19(2): 94-104. |
|