1. J. J.Jia and G. L. Yan, “A Personalized(p,k)-Anonymity Privacy Protection Algorithm,” Computer Engineering, Vol. 44, No. 1, pp. 176-181, 2018 2. A. Rodríguez-Hoyos, J. Estrada-Jiménez, D. Rebollo-Monedero,J. Parra-Arnau, “Does k-Anonymous Microaggregation Affect Machine-Learned Macrotrends?”Access IEEE, Vol. 6, pp. 28258-28277, 2018 3. K. Oishi, Y. Tahara, Y. Sei, and A. Ohsuga, “Proposal of l-Diversity Algorithm Considering Distance Between Sensitive Attribute Values,” in Proceedings of IEEE Symposium Series on Computational Intelligence (SSCI), 2017 4. Z. Tu, K. Zhao, F. L. Xu, Y. Li, L. Su,D. P. Jin, “Protecting Trajectory From Semantic Attack Considering k-Anonymity, l-Diversity, and t-Closeness,” IEEE Transactions on Network and Service Management, Vol. 16, No. 1, March 2019 5. D. Huang, C. D. Wang,J. H. Lai, “Locally Weighted Ensemble Clustering,”IEEE Transactions on Cybernetics, Vol. 51, pp. 1-14, 2017 6. C. Dwork, “Differential Privacy,” in Proceedings of the 33rd International Conference on Automata, Languages and Programming, Vol. Part II, Springer, Berlin, Heidelberg, 2006 7. Y. H. Xiao, L. Xiong,C. Yuan, “Differentially Private Data Release Through Multidimensional Partitioning,” in Proceedings of VLDB Conference on Secure Data Management, Springer-Verlag, 2010 8. G. Cormode, M. Procopiuc, E. Shen, D. Srivastava,T. Yu, “Differentially Private Spatial Decompositions,” inProceedings of the 27th IEEE International Conference on Data Engineering (ICDE), pp. 20-31, 2012 9. W. Qardaji, W. Yang, and N. Li, “Differentially Private Grids for Geospatial Data,” in Proceedings of 2013 IEEE 29th International Conference on Data Engineering (ICDE), 2013 10. J. Zhang, X. Xiao, and X. Xie, “Privtree: A Differentially Private Algorithm for Hierarchical Decompositions,” in Proceedings of the 2016 International Conference on Management of Data, pp. 155-170, 2016 11. A. Inan, M. Kantarcioglu, G. Ghinita,E. Bertino, “Private Record Matching using Differential Privacy,” in Proceedings of International Conference on Extending Database Technology, ACM, 2010 12. H. To, L. Fan,C. Shahabi, “Differentially Private h-Tree,” inProceedings of the 2nd Workshop on Privacy in Geographic Information Collection and Analysis, pp. 1-8, 2015 13. R. Chen, B. C. M.Fung, P. S. Yu, and B. C. Desai, “Correlated Network Data Publication via Differential Privacy,” The VLDB Journal, Vol. 23, No. 4, pp. 653-676, 2014 14. C. Dwork, F. McSherry, K. Nissim,A. Smith, “Calibrating Noise to Sensitivity in Private Data Analysis,” inProceedings of the 3rd Theory of Cryptography Conference (TCC), pp. 265-284, 2006 15. F. McSherry and K. Talwar, “Mechanism Design via Differential Privacy,” inProceedings of the 48th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 94-103, 2007 16. F. McSherry, “Privacy Integrated Queries: An Extensible Platform for Privacy-Preserving Data Analysis,” inProceedings of the 35th ACM SIGMOD International Conference on Management of Data (SIGMOD), pp. 19-30, 2009 |