[1]. |
SathyanarayananS., ShankarV. and DonnellE.T. Pavement marking retroreflectivity inspection data: a Weibull analysis. Transportation Research Record, 2055(1), pp.63-70, 2008.
|
[2]. |
PradhanB. and KunduD. Analysis of interval-censored data with Weibull lifetime distribution. Sankhya B, 76(1), pp.120-139, 2014.
|
[3]. |
AFNOR, NF EN1436+A 1 - Maintenance - Maintenance terminology, 2009.
|
[4]. |
VECTRA, Ecodyn MLPC - Signing visibility, https://www.nextroad. com/product/ecodyn-3/, 2018.
|
[5]. |
LuJ.J. Performance of Traffic Markings in cold regions. Transportation Research Center, Institute of Northen Engineering, University of Alaska Fairbanks, 1995.
|
[6]. |
AbboudN. and BowmanB.L. Cost-and longevity-based scheduling of paint and thermoplastic striping. Transportation Research Record, 1794(1), pp.55-62, 2002.
|
[7]. |
SitzabeeW.E., HummerJ.E.and RasdorfW. Pavement marking degradation modeling and analysis. Journal of infrastructure systems, 15(3), pp.190-199, 2009.
|
[8]. |
SarasuaW.A., ClarkeD.B.and DavisW.J. Evaluation of interstate pavement marking retroreflectivity, 2003.
|
[9]. |
KarwaV. and DonnellE.T. Predicting pavement marking retroreflectivity using artificial neural networks: Exploratory analysis. Journal of Transportation Engineering, 137(2), pp.91-103, 2011.
|
[10]. |
CastetJ.F.and SalehJ.H. Single versus mixture Weibull distributions for nonparametric satellite reliability. Reliability Engineering & System Safety, 95(3), pp.295-300, 2010.
|
[11]. |
McLachlanG.J.and KrishnanT., 2007. The EM algorithm and extensions (Vol. 382). John Wiley & Sons.
|
[12]. |
ChauveauD. A stochastic EM algorithm for mixtures with censored data. Journal of statistical planning and inference, 46(1), pp.1-25, 1995.
|
[13]. |
BordesL. and ChauveauD. Stochastic EM algorithms for parametric and semiparametric mixture models for right-censored lifetime data. Computational Statistics, 31(4), pp. 1513-1538, 2016.
|
[14]. |
ElmahdyE.E. A new approach for Weibull modeling for reliability life data analysis. Applied Mathematics and computation, 250, pp.708-720, 2015.
|
[15]. |
BalakrishnanN. and MitraD. Left truncated and right censored Weibull data and likelihood inference with an illustration. Computational Statistics & Data Analysis, 56(12), pp.4011-4025, 2012.
|
[16]. |
BagheriS.F., SamaniE.B.and GanjaliM. The generalized modified Weibull power series distribution: Theory and applications. Computational Statistics & Data Analysis, 94, pp.136-160, 2016.
|
[17]. |
KunduD. and DeyA.K. Estimating the parameters of the Marshall-Olkin bivariate Weibull distribution by EM algorithm. Computational Statistics & Data Analysis, 53(4), pp.956-965, 2009.
|
[18]. |
BainL. Statistical analysis of reliability and life-testing models: theory and methods. Routledge, 2017.
|
[19]. |
RedondinM., FaulN., BouillautL., SameA. and DaucherD. Alternative Weibull analysis for road markings: an EM approach. In ESREL2018-European Safety and Reliability Conference ( p.7p), June 2018.
|
[20]. |
EvansJ.W. Two-and three-parameter Weibull goodness-of-fit tests ( Vol.493). US Department of Agriculture, Forest Service, Forest Products Laboratory, 1989.
|
[21]. |
RedondinM., BouillautL. and DaucherD. A clustering-based approach to segment a pavement markings line. International Journal of Performability Engineering, 16(10), pp-1497, 2020.
|
[22]. |
DucrosF. and PamphileP. Bayesian estimation of Weibull mixture in heavily censored data setting. Reliability Engineering & System Safety, 180, pp.453-462, 2018.
|
[23]. |
MarsiliF., BödefeldJ., CroceP. and LandiF. Bayesian approaches to lifetime prediction. Safety and Reliability-Safe Societies in a Changing World, pp.707-715, 2018.
|