Int J Performability Eng ›› 2021, Vol. 17 ›› Issue (4): 379-393.doi: 10.23940/ijpe.21.04.p6.379393
• Original article • Previous Articles Next Articles
Chhabra Meghaa,*(), Shukla Manoj Kumarb, and Ravulakolluc Kiran Kumarc
Contact:
Chhabra Megha
E-mail:megha.chhbr@gmail.com
Chhabra Megha, Shukla Manoj Kumar, and Ravulakolluc Kiran Kumar. Intelligent Optimization of Latent Fingerprint Image Segmentation using Stacked Convolutional Autoencoder [J]. Int J Performability Eng, 2021, 17(4): 379-393.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1]. | ChhabraM., ShuklaM.K.and RavulakolluK.K. Bagging-and boosting-based latent fingerprint image classification and segmentation. In International Conference on Innovative Computing and Communications, Springer, Singapore, pp.189-201, 2021. |
[2]. | SankaranA., VatsaM., and SinghR. Hierarchical fusion for matching simultaneous latent fingerprint. In 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), 2012. |
[3]. | ChhabraM., ShuklaM.K.and RavulakolluK.K. State-of-the-Art: A Systematic Literature Review of Image Segmentation in Latent Fingerprint Foren. Recent Advances in Computer Science and Communications (Formerly: Recent Patents on Computer Science), 13(6), pp. 1115-1125, 2020. |
[4]. | BorjiA. What is a Salient Object? A dataset and a baseline model for salient object detection. IEEE Transactions on Image Processing, 24(2), pp.742-756, 2015. |
[5]. | ChenL.C., PapandreouG., KokkinosI., MurphyK. and YuilleA.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4), pp.834-848, 2017. |
[6]. | HuangF., ZhangJ., ZhouC., WangY., HuangJ. and ZhuL. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides, 17(1), pp.217-229, 2020. |
[7]. | AminJ., SharifM., GulN., RazaM., AnjumM.A., NisarM.W.and BukhariS.A.C. Brain tumor detection by using stacked autoencoders in deep learning. Journal of medical systems, 44(2), pp.1-12, 2020. |
[8]. | ShortN., HsiaoM., AbbottA., and FoxE. Latent fingerprint segmentation using ridge template correlation. In 4th International Conference on Imaging for Crime Detection and Prevention 2011 (ICDP 2011), 2011. |
[9]. | NIST Special Database-27. Available at: http://www.nist.gov/itl/iad/ig/sd27a.cfm. |
[10]. | ChoiH., BoaventuraM., BoaventuraI., and JainA. Automatic segmentation of latent fingerprints. In 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), 2012. |
[11]. | ZhangJ., LaiR., and KuoC. Adaptive Directional Total-Variation Model for Latent Fingerprint Segmentation. IEEE Transactions on Information Forensics and Security, 8(8), pp. 1261-1273, 2013. |
[12]. | Neurotechnology Inc. Verifinger. Available at: http://www.neurotechnology.com/verifinger.html. |
[13]. | SankaranA., JainA., VashisthT., VatsaM. and SinghR. Adaptive latent fingerprint segmentation using feature selection and random decision forest classification. Information Fusion, 34, pp.1-15, 2017. |
[14]. | EzeobiejesiJ. and BhanuB. Latent fingerprint image segmentation using deep neural network. In Deep Learning for Biometrics . Springer, Cham, pp.83-107, 2017. |
[15]. | KhanA.I.and WaniM.A. Patch-based segmentation of latent fingerprint images using convolutional neural network. Applied Artificial Intelligence, 33(1), pp.87-100, 2019. |
[16]. | NguyenD. L., Cao, K. and Jain, A.K. Automatic latent fingerprint segmentation. In 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), IEEE, pp.1-9, October 2018. |
[17]. | LiG. and YuY. Visual Saliency Detection Based on Multiscale Deep CNN Features. IEEE Transactions on Image Processing, 25(11), pp.5012-5024, 2016. |
[18]. | MateescuV. and BajićI. Attention Retargeting by Color Manipulation in Images. In Proceedings of the 1st International Workshop on Perception Inspired Video Processing - PIVP ’14, 2014. |
[19]. | AliH., SharifM., YasminM. and RehmaniM.H. Color-based template selection for detection of gastric abnormalities in video endoscopy. Biomedical Signal Processing and Control, 56, p. 101668, 2020. |
[20]. | ChaiD. and NganK.N. Face segmentation using skin-color map in videophone applications. IEEE Transactions on Circuits and Systems for Video Technology, 9(4), pp.551-564, 1999. |
[21]. | ChhabraM., ShuklaM., and RavulakolluK. Boosting the classification performance of latent fingerprint segmentation using cascade of classifiers. Intelligent Decision Technologies, 14(3), pp.359-371, 2020. |
[22]. | PiY., NathN.D.and BehzadanA.H. Convolutional neural networks for object detection in aerial imagery for disaster response and recovery. Advanced Engineering Informatics, 43, p. 101009, 2020. |
[23]. | PanM., LiuY., CaoJ., LiY., LiC. and ChenC.H. Visual recognition based on deep learning for navigation mark classification. IEEE Access, 8, pp.32767-32775, 2020. |
[24]. | XuJ., LiZ., DuB., ZhangM. and LiuJ. Reluplex made more practical: Leaky ReLU. In 2020 IEEE Symposium on Computers and Communications (ISCC), IEEE, pp.1-7, July 2020. |
[25]. | PurnomoA. and TjandrasaH. Epileptic Seizure Classification using Deep Batch Normalization Neural Network. Lontar Komputer: Jurnal Ilmiah Teknologi Informasi, 11(3), pp.124-131, 2020. |
[26]. | ShelhamerE., LongJ. and DarrellT. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), pp.640-651, 2017. |
[27]. | LiuX. and LiuJ. Gait Recognition Method of Underground Coal Mine Personnel Based on Densely Connected Convolution Network and Stacked Convolutional Autoencoder. Entropy, 22(6), p.695, 2020. |
[28]. | WenZ., KeZ., XieW. and ShenL. Clustering-Based Adaptive Dropout for CNN-Based Classification. In Asian Conference on Pattern Recognition . Springer, Cham, pp.46-58, November 2019. |
[29]. | WangS.H., MuhammadK., HongJ., SangaiahA.K.and ZhangY.D. Alcoholism identification via convolutional neural network based on parametric ReLU, dropout, and batch normalization. Neural Computing and Applications, 32(3), pp.665-680, 2020. |
[30]. | KumarA.S.and NairJ.J. Pair wise training for stacked convolutional autoencoders using small scale images. Journal of Intelligent & Fuzzy Systems, 36(3), pp. 1987-1995, 2019. |
[31]. | MasciJ., MeierU., CireşanD. and SchmidhuberJ. Stacked convolutional auto-encoders for hierarchical feature extraction. In International conference on artificial neural networks . Springer, Berlin, Heidelberg, pp.52-59, June 2011. |
[32]. | XiongZ., CuiY., LiuZ., ZhaoY., HuM. and HuJ. Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation. Computational Materials Science, 171, p. 109203, 2020. |
[33]. | DarawshehH.Y.and TarczynskiA. Fir Filtering of Discontinuous Signals: A Random-Stratified Sampling Approachx. In ICASSP 2020-2020 IEEE International Conference on Acoustics , Speech and Signal Processing (ICASSP). IEEE, pp.5800-5804, May 2020. |
[34]. | TianY., ShiyangY., ChenlongG., BaolinD., LiangX., and WangK. A real-time infrared image enhancement algorithm based on improved CLAHE. In 2018 International Conference on Image and Video Processing, and Artificial Intelligence, 2018. |
[1] | C. Rohith Bhat and Madhusundar Nelson. Artificial Intelligence Based Credit Card Fraud Detection for Online Transactions Optimized with Sparrow Search Algorithm [J]. Int J Performability Eng, 2023, 19(9): 624-632. |
[2] | Neha Kohli and Tapas Kumar. Envisaging Alzheimer’s Disease Stage through Fuzzy Rank-Based Ensemble of Transfer Learning Models [J]. Int J Performability Eng, 2023, 19(6): 397-406. |
[3] | Manvi Khatri and Ajay Sharma. Deep Learning Approach based on Iris, Face, and Palmprint Fusion for Multimodal Biometric Recognition System [J]. Int J Performability Eng, 2023, 19(6): 407-416. |
[4] | Vaishali Arya and Tapas Kumar. Boosting X-Ray Scans Feature for Enriched Diagnosis of Pediatric Pneumonia using Deep Learning Models [J]. Int J Performability Eng, 2023, 19(3): 175-183. |
[5] | Pavneet Singh, Jigyasa Chopra, Amandeep Singh, Nikita Nijhawan, and Kritika. Deep Learning Innovations for Enhanced Drusen Detection in Retinal Images [J]. Int J Performability Eng, 2023, 19(12): 779-787. |
[6] | Saumya Kumar, Puneet Goswami, and Shivani Batra. Enriched Diagnosis of Osteoporosis using Deep Learning Models [J]. Int J Performability Eng, 2023, 19(12): 824-833. |
[7] | Kamireddy Vijay Chandra, Kala Praveen Bagadi, Kalapala Vidya Sagar, R. Manjula Sri, and K. Sudha Rani. Deep Learning-Powered Corneal Endothelium Image Segmentation with Attention U-Net [J]. Int J Performability Eng, 2023, 19(11): 736-743. |
[8] | Sonika Jindal, Monika Sachdeva, and Alok Kumar Singh Kushwaha. Human Activity Recognition using Ensemble Convolutional Neural Networks and Long Short-Term Memory [J]. Int J Performability Eng, 2022, 18(9): 660-667. |
[9] | Keshav H. Jatakar, Gopal Mulgund, Abhishek D. Patange, B. B. Deshmukh, and Kishor S. Rambhad. Multi-Point Face Milling Tool Condition Monitoring Through Vibration Spectrogram and LSTM-Autoencoder [J]. Int J Performability Eng, 2022, 18(8): 570-579. |
[10] | Bhupendra Kumar and Sarvesh Tanwar. Rule-based Merged Line Segmentation Technique [J]. Int J Performability Eng, 2022, 18(7): 485-491. |
[11] | Roop Preet Kaur, Anshu Sharma, Inderpal Singh, and Rahul Malhotra. Deep Learning-Based Pneumonia Recognition from Chest X-Ray Images [J]. Int J Performability Eng, 2022, 18(5): 380-386. |
[12] | Revati M. Wahul, Archana P. Kale, and Abhishek D. Patange. Health Monitoring of Turning Tool through Vibration Signals Processed using Convolutional Neural Network Architecture [J]. Int J Performability Eng, 2022, 18(10): 730-740. |
[13] | Angel Arul Jothi J and Razia Sulthana A. A Review on the Literature of Fashion Recommender System using Deep Learning [J]. Int J Performability Eng, 2021, 17(8): 695-702. |
[14] | Sanjay Kumar Ahuja, Manoj Kumar Shukla, and Kiran Kumar Ravulakollu. Optimized Deep Learning Framework for Detecting Pitting Corrosion based on Image Segmentation [J]. Int J Performability Eng, 2021, 17(7): 627-637. |
[15] | S. Anbazhagan, and S. Karthikumar. Multilevel Image Threshold Estimation using Teaching Learning-based Optimization [J]. Int J Performability Eng, 2021, 17(7): 638-646. |
|