[1] Hoegl, M. and Parboteeah, K.P., Creativity in Innovative Projects: How Teamwork Matters. Journal of Engineering and Technology Management,24(1-2), pp.148-166, 2007. DOI: 10.1016/j.jengtecman.2007.01.008. [2] Beecham S., Clear T., Barr J., Daniels M., Oudshoorn M., andNoll J., Preparing Tomorrow's Software Engineers for Work in a Global Environment. IEEE Software,34(1), pp.9-12, 2017. DOI: 10.1109/MS.2017.16. [3] Mao K., Capra L., Harman M., andJia Y., A Survey of the Use of Crowdsourcing in Software Engineering.Journal of Systems and Software, 126, pp.57-84, 2017. DOI: 10.1016/j.jss.2016.09.015. [4] Mao K., Yang Y., Wang Q., Jia Y., andHarman M., Developer Recommendation for Crowdsourced Software Development Tasks. In 2015 IEEE Symposium on Service-Oriented System Engineering (pp. 347-356), March2015. IEEE. DOI: 10.1109/SOSE.2015.46. [5] Leicht N., Durward D., Blohm I., andLeimeister J.M., Crowdsourcing in Software Development: A State-of-the-Art Analysis in 28th Bled eConference, Maribor, Slovenia, 2015. [6] Ebert, C. and De Neve, P., Surviving Global Software Development. IEEE Software,18(2), pp.62-69, 2001. DOI: 10.1109/52.914748 [7] Petkovic D.,Sosnick-Pérez, M., Okada, K., Todtenhoefer, R., Huang, S., Miglani, N., and Vigil, A., Using the Random Forest Classifier to Assess and Predict Student Learning of Software Engineering Teamwork. In 2016 IEEE Frontiers in Education Conference (FIE) (pp. 1-7). IEEE. October 2016. DOI: 10.1109/FIE.2016.7757406. [8] Reel J.S.,Critical Success Factors in Software Projects. IEEE Software,16(3), pp.18-23, 1999. DOI 10.1109/52.765782. [9] Porter C.O.,Itir Gogus, C., and Yu, R.C.F., When Does Teamwork Translate into Improved Team Performance? A Resource Allocation Perspective. Small Group Research,41(2), pp.221-248, 2010. DOI 10.1177/1046496409356319. [10] Petkovic, D., Sosnick-Pérez, M., Huang, S., Todtenhoefer, R., Okada, K., Arora, S., Sreenivasen, R., Flores, L., and Dubey, S., SETAP: Software Engineering Teamwork Assessment and Prediction Using Machine Learning. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings (pp. 1-8), October 2014. IEEE. DOI: 10.1109/FIE.2014.7044199. [11] Rodriguez, D., Ruiz, R., Cuadrado-Gallego, J., Aguilar-Ruiz, J., and Garre, M., Attribute Selection in Software Engineering Datasets for Detecting Fault Modules. In 33rd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO 2007) (pp. 418-423), August 2007. IEEE. DOI: 10.1109/EUROMICRO.2007.20. [12] Friedman J.H.,Greedy Function Approximation: A Gradient Boosting Machine.Annals of Statistics, pp.1189-1232, 2001. DOI: 10.1214/aos/1013203451. [13] Breiman L.,Random Forests. Machine Learning,45(1), pp.5-32, 2001. DOI: 10.1023/A:1010933404324. [14] Chen, T. and Guestrin, C., XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining (pp. 785-794), ACM Press, August 2016. DOI: 10.1145/2939672.2939785. [15] Sapateiro C.M., Antunes P., Johnstone D., andPino J.A., Gathering Big Data for Teamwork Evaluation with Microworlds. Cluster Computing,20(2), pp.1637-1659, 2017. DOI: 10.1007/s10586-016-0715-1 [16] Tarricone, P. and Luca, J.,Successful Teamwork: A Case Study. In Proceedings of the 25th HERDSA Annual Conference,(pp. 640-646) Perth, Western Australia, 7-10 July 2002. [17] Altiner, S. and Ayhan, M.B., An Approach for The Determination and Correlation of Diversity and Efficiency of Software Development Teams. South African Journal of Science,114(3-4), pp.1-9, 2018. DOI: 10.17159/sajs.2018/20170331. [18] Dyba, T., An Instrument for Measuring the Key Factors of Success in Software Process Improvement. Empirical Software Engineering, 5(4), pp.357-390, 2000. DOI10.1023/A:1009800404137. [19] Niazi M., Wilson D., andZowghi D., Critical Success Factors for Software Process Improvement Implementation: An Empirical Study. Software Process: Improvement and Practice,11(2), pp.193-211, 2006. DOI: 10.1002/spip.261 [20] Paasivaara M., Lassenius C., Damian D., Räty P., andSchröter A., Teaching Students Global Software Engineering Skills Using Distributed Scrum. In 2013 35th International Conference on Software Engineering (ICSE) (pp. 1128-1137). IEEE, May 2013. DOI: 10.1109/ICSE.2013.6606664. [21] Friedman J.H.,Stochastic Gradient Boosting. Computational Statistics & Data Analysis,38(4), pp.367-378, 2002. [22] Kazemitabar S.J., Amini A.A., Bloniarz A., andTalwalkar A., Variable Importance Using Decision Trees. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 425-434), December 2017. [23] Elith J., Leathwick J.R., andHastie T., A Working Guide to Boosted Regression Trees. Journal of Animal Ecology,77(4), pp.802-813, 2008. DOI: 10.1111/j.1365-2656.2008.01390.x. [24] Xu Z., Huang G., Weinberger K.Q., andZheng A.X., Gradient Boosted Feature Selection. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 522-531), August 2014. DOI: 10.1145/2623330.2623635. |