1. Zhao Y., Zhao P., Liang H. and Zhang X.Identifying Genes Associated With Autism Spectrum Disorders by Random Walk Method With Significance Tests.IEEE Access, 8, pp.156686-156694, 2020. 2. Thabtah F.Machine learning in autistic spectrum disorder behavioral research: A review and ways forward. Informatics for Health and Social Care,44(3), pp.278-297, 2019. 3. Katuwal G.J. Machine Learning Based Autism Detection Using Brain Imaging, 2017. 4. Bone D., Goodwin M.S., Black M.P., Lee C.C., Audhkhasi K. and Narayanan S.Applying machine learning to facilitate autism diagnostics: pitfalls and promises. Journal of autism and developmental disorders,45(5), pp.1121-1136, 2015. 5. Wall D.P., Kosmicki J., Deluca T.F., Harstad E. and Fusaro V.A.Use of machine learning to shorten observation-based screening and diagnosis of autism. Translational psychiatry,2(4), pp.e100-e100, 2012. 6. Hauck, F. and Kliewer, N.Machine Learning for Autism Diagnostics: Applying Support Vector Classification. InInt’l Conf. Health Informatics and Medical Systems, 2017. 7. Heinsfeld A.S., Franco A.R., Craddock R.C., Buchweitz A. and Meneguzzi F.Identification of autism spectrum disorder using deep learning and the ABIDE dataset.NeuroImage: Clinical, 17, pp.16-23, 2018. 8. van den Bekerom, B. February. Using machine learning for detection of autism spectrum disorder. InProc. 20th Student Conf. IT (pp. 1-7), 2017. 9. Wall D.P., Kosmicki J., Deluca T.F., Harstad E. and Fusaro V.A.Use of machine learning to shorten observation-based screening and diagnosis of autism. Translational psychiatry,2(4), pp.e100-e100, 2012. 10. Liu, W., Li, M. and Yi, L.Identifying children with autism spectrum disorder based on their face processing abnormality: A machine learning framework. Autism Research,9(8), pp.888-898, 2016. 11. Bone D., Goodwin M.S., Black M.P., Lee C.C., Audhkhasi K. and Narayanan S.Applying machine learning to facilitate autism diagnostics: pitfalls and promises. Journal of autism and developmental disorders,45(5), pp.1121-1136, 2015. 12. Kosmicki J.A., Sochat V., Duda M. and Wall D.P.Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning. Translational psychiatry,5(2), pp.e514-e514, 2015. 13. Wolfers T., Buitelaar J.K., Beckmann C.F., Franke B. and Marquand A.F.From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics.Neuroscience & Biobehavioral Reviews, 57, pp.328-349, 2015. 14. Duda M., Ma R., Haber N. and Wall D.P.Use of machine learning for behavioral distinction of autism and ADHD. Translational psychiatry,6(2), pp.e732-e732, 2016. 15. Chu, K.C., Huang, H.J. and Huang, Y.S.August. Machine learning approach for distinction of ADHD and OSA. In 2016 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM) (pp. 1044-1049). IEEE, 2016. |