1. Salmeron, J., Wood, K. and Baldick, R.Optimizing Electric Grid Design Under Asymmetric Threat. Naval Postgraduate School, Technical Report, NPS-OR-03-002, 2003. 2. Salmeron, J., Wood, K. and Baldick, R.Optimizing electric grid design under asymmetric threat (II). Naval Postgraduate School Monterey CA Dept of Operations Research, 2004. 3. Alvarez R.E.Interdicting electrical power grids. NAVAL POSTGRADUATE SCHOOL MONTEREY CA, 2004. 4. Lesieutre, B.C., Pinar, A. and Roy, S.Power system extreme event detection: The vulnerability frontier. In Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008) (pp. 184-184). IEEE, January 2008. 5. Bienstock, D., Chertkov, M. and Harnett, S.Chance-constrained optimal power flow: Risk-aware network control under uncertainty. Siam Review,56(3), pp.461-495, 2014. 6. Haes Alhelou, H., Hamedani-Golshan, M.E., Njenda, T.C. and Siano, P. A survey on power system blackout and cascading events: Research motivations and challenges. Energies, 12(4), p.682, 2019. 7. Smith, J.C. and Lim, C.Algorithms for network interdiction and fortification games. In Pareto optimality, game theory and equilibria (pp. 609-644). Springer, New York, NY, 2008. 8. Jalili M.Enhancing synchronizability of diffusively coupled dynamical networks: a survey. IEEE transactions on neural networks and learning systems,24(7), pp.1009-1022, 2013. 9. Li H.J., Bu Z., Wang Z., Cao J. and Shi Y.Enhance the performance of network computation by a tunable weighting strategy. IEEE Transactions on Emerging Topics in Computational Intelligence,2(3), pp.214-223, 2018. 10. Yang, L.X., Jiang, J. and Liu, X.J.Influence of community structure on the synchronization of power network. International Journal of Modern Physics B, 30(2), p.1550252, 2016. 11. Kuramoto Y.Chemical oscillations, waves, and turbulence. Courier Corporation, 2003. 12. Filatrella, G., Nielsen, A.H. and Pedersen, N.F.Analysis of a power grid using a Kuramoto-like model. The European Physical Journal B,61(4), pp.485-491, 2008. 13. Chavez M., Hwang D.U., Amann A., Hentschel H.G.E. and Boccaletti, S.Synchronization is enhanced in weighted complex networks. Physical Review Letters, 94(21), p.218701, 2005. 14. Deb K., Pratap A., Agarwal S. and Meyarivan T.A.M.T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation,6(2), pp.182-197, 2002. 15. Coello C.C.Evolutionary multi-objective optimization: a historical view of the field. IEEE computational intelligence magazine,1(1), pp.28-36, 2006. 16. Sun R., Liu Y., Zhu H., Azizipanah-Abarghooee, R.and Terzija, V. A network reconfiguration approach for power system restoration based on preference-based multiobjective optimization. Applied Soft Computing, 83, p.105656, 2019. 17. Taleizadeh, A.A., Khaligh, P.P. and Moon, I.Hybrid NSGA-II for an imperfect production system considering product quality and returns under two warranty policies.Applied Soft Computing, 75, pp.333-348, 2019. 18. Ramesh, S., Kannan, S. and Baskar, S.Application of modified NSGA-II algorithm to multi-objective reactive power planning. Applied Soft Computing,12(2), pp.741-753, 2012. 19. Murugan, P., Kannan, S. and Baskar, S.NSGA-II algorithm for multi-objective generation expansion planning problem. Electric power systems research,79(4), pp.622-628, 2009. 20. Pecora, L.M. and Carroll, T.L.Master stability functions for synchronized coupled systems. Physical review letters, 80(10), p.2109, 1998. 21. Al Khafaf, N. and Jalili, M. Optimization of synchronizability in complex spatial networks.Physica A: Statistical Mechanics and Its Applications, 514, pp.46-55, 2019. 22. Jalili, M. and Yu, X., 2016. Enhancement of synchronizability in networks with community structure through adding efficient inter-community links. IEEE Transactions on Network Science and Engineering,3(2), pp.106-116. 23. Zhou, C. and Kurths, J.Dynamical weights and enhanced synchronization in adaptive complex networks. Physical review letters, 96(16), p.164102, 2006. 24. Dekker H.C2 and the Kuramoto Model: An Epistemological Retrospective. In 22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, pp 646-652, 2017. 25. Arenas A.,Díaz-Guilera, A., Kurths, J., Moreno, Y. and Zhou, C. Synchronization in complex networks. Physics reports,469(3), pp.93-153, 2008. 26. Grzybowski J.M.V., Macau, E.E.N. and Yoneyama, T. On synchronization in power-grids modelled as networks of second-order Kuramoto oscillators. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(11), p.113113, 2016. 27. Slowik, A. and Kwasnicka, H.Evolutionary algorithms and their applications to engineering problems.Neural Computing and Applications, pp.1-17, 2020. 28. Seck G.S., Krakowski V., Assoumou E., Maïzi N. and Mazauric, V. Embedding power system's reliability within a long-term Energy System Optimization Model: Linking high renewable energy integration and future grid stability for France by2050. Applied Energy, 257, p.114037, 2020. 29. Kremers, E., Marı, J. and Barambones, O.Emergent synchronisation properties of a refrigerator demand side management system.Applied energy, 101, pp.709-717, 2013. 30. Maïzi N., Mazauric V., Assoumou E., Bouckaert S., Krakowski V., Li X. and Wang, P. Maximizing intermittency in 100% renewable and reliable power systems: A holistic approach applied to Reunion Island in2030. Applied Energy, 227, pp.332-341, 2018. 31. Armbruster A.,McMillin, B. and Crow, M.L. Controlling power flow using FACTS devices and the max-flow algorithm. In Proceedings of the International Conference on Power Systems and Control, December 2002. 32. Armbruster A., Gosnell M., McMillin, B. and Crow, M. The maximum flow algorithm applied to the placement and distributed steady-state control of UPFCs. In Proceedings of the 37th Annual North American Power Symposium, 2005. (pp. 77-83). IEEE, October 2005. 33. Trautmann, H., Steuer, D., andMersmann, O. mco package under R. , 2012. 34. Yajure C., Montilla D., Ramirez-Marquez, J.E. and Rocco S, C.M. Network vulnerability assessment via bi-objective optimization with a fragmentation approach as proxy. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability,227(6), pp.576-585, 2013. 35. Rocco C.M.,K. Barker, and J. Moronta. A Tri-objective Model for Assessing the Synchronizability of an Energy System.Reliability Engineering and System Safety, 2020. 36. Bringmann, K. and Friedrich, T.Approximation quality of the hypervolume indicator.Artificial Intelligence, 195, pp.265-290, 2013. 37. Soetaert, K., Petzoldt, T. and Setzer, R.W.Solving differential equations in R: package deSolve. Journal of statistical software,33(1), pp.1-25, 2010. 38. Fortuna L., Frasca M., andFiore A.S.Analysis of the Italian Power Grid Based on Kuramoto-like Model. PHYSCON 2011, Leon, Spain, 2011. 39. Subcommittee P.M.IEEE reliability test system. IEEE Transactions on power apparatus and systems,(6), pp.2047-2054, 1979. 40. Grigg C., Wong P., Albrecht P., Allan R., Bhavaraju M., Billinton R., Chen Q., Fong C., Haddad S., Kuruganty S. and Li W.The IEEE reliability test system-1996. A report prepared by the reliability test system task force of the application of probability methods subcommittee. IEEE Transactions on power systems,14(3), pp.1010-1020, 1999. |