Int J Performability Eng ›› 2021, Vol. 17 ›› Issue (9): 741-755.doi: 10.23940/ijpe.21.09.p1.741755
Ngan Trana, Haihua Chena, Janet Jiangb, Jay Bhuyanc, Junhua Dinga,*
Submitted on
;
Revised on
;
Accepted on
Contact:
* E-mail address: junhua.ding@unt.edu
Ngan Tran, Haihua Chen, Janet Jiang, Jay Bhuyan, Junhua Ding. Effect of Class Imbalance on the Performance of Machine Learning-based Network Intrusion Detection [J]. Int J Performability Eng, 2021, 17(9): 741-755.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Lis, P. and Mendel, J.Cyberattacks on critical infrastructure: An economic perspective. [2] Eamon, Javers. and Amanda, Macias. [3] Pervez, M.S. and Farid, D.M.Feature selection and intrusion classification in NSL-KDD cup 99 dataset employing SVMs. In [4] Halimaa, A. and Sundarakantham, K.Machine learning based intrusion detection system. In [5] Latah, M. and Toker, L.An efficient flow-based multi-level hybrid intrusion detection system for software-defined networks. [6] Nandi S., Maity S., andDas M.NIDF: An Ensemble-inspired Feature Learning Framework for Network Intrusion Detection. In [7] Yan B., Han G., Sun M., andYe S.A novel region adaptive SMOTE algorithm for intrusion detection on imbalanced problem. In [8] Liu J., Gao Y., andHu F.A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM. [9] Gao X., Shan C., Hu C., Niu Z., andLiu Z.An adaptive ensemble machine learning model for intrusion detection. [10] Liu X., Li T., Zhang R., Wu D., Liu Y., andYang Z.A GAN and Feature Selection-Based Oversampling Technique for Intrusion Detection.Security and Communication Networks, 2021. [11] Su T., Sun H., Zhu J., Wang S., andLi Y.BAT: Deep learning methods on network intrusion detection using NSL-KDD dataset. [12] Choraś, M. and Pawlicki, M.Intrusion detection approach based on optimised artificial neural network. [13] Bamakan S.M.H., Wang, H., and Shi, Y. Ramp loss K-Support Vector Classification-Regression; a robust and sparse multi-class approach to the intrusion detection problem. [14] Li Z., Qin Z., Huang K., Yang X., andYe S.Intrusion detection using convolutional neural networks for representation learning. In [15] Jiang K., Wang W., Wang A., andWu H.Network intrusion detection combined hybrid sampling with deep hierarchical network. [16] Wu K., Chen Z., andLi W.A novel intrusion detection model for a massive network using convolutional neural networks. [17] Shams E.A., Rizaner A., andUlusoy A.H.A novel context-aware feature extraction method for convolutional neural network-based intrusion detection systems. [18] Yang Y., Zheng K., Wu C., andYang Y.Improving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural network. [19] Javaid A., Niyaz Q., Sun W., andAlam M.A deep learning approach for network intrusion detection system. [20] Yin C., Zhu Y., Fei J., andHe X.A deep learning approach for intrusion detection using recurrent neural networks. [21] Devan, P. and Khare, N.An efficient XGBoost-DNN-based classification model for network intrusion detection system. [22] Yan, B. and Han, G.LA-GRU: Building combined intrusion detection model based on imbalanced learning and gated recurrent unit neural network.security and communication networks, 2018. [23] Ring M., Wunderlich S., Scheuring D., Landes D., andHotho A.A survey of network-based intrusion detection data sets. [24] Chen H., Tran N., Thumati A.S., Bhuyan J., andDing J.Data Curation and Quality Assurance for Machine Learning-based Cyber Intrusion Detection.arXiv preprint arXiv:2105.10041, 2021. [25] Liu L., Wang P., Lin J., andLiu L.Intrusion detection of imbalanced network traffic based on machine learning and deep learning. [26] Abrar I., Ayub Z., Masoodi F., andBamhdi A.M.A machine learning approach for intrusion detection system on NSL-KDD dataset. In [27] Parsaei M.R., Rostami S.M., andJavidan R.A hybrid data mining approach for intrusion detection on imbalanced NSL-KDD dataset. [28] Shone N., Ngoc T.N., Phai V.D., andShi Q.A deep learning approach to network intrusion detection. [29] Kang, M.J. and Kang, J.W.Intrusion detection system using deep neural network for in-vehicle network security. [30] Al J.K., Aljnidi M., andDesouki M.S.Anomaly detection optimization using big data and deep learning to reduce false-positive. [31] Bagui, S. and Li, K.Resampling imbalanced data for network intrusion detection datasets. [32] Tesfahun, A. and Bhaskari, D.L.Intrusion detection using random forests classifier with SMOTE and feature reduction. In [33] Zhang H., Huang L., Wu C.Q., andLi Z.An effective convolutional neural network based on SMOTE and Gaussian mixture model for intrusion detection in imbalanced dataset. [34] Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., andLiu T.Y.Lightgbm: A highly efficient gradient boosting decision tree. [35] Chen, T. and Guestrin, C.Xgboost: A scalable tree boosting system. In [36] Devlin J., Chang M.W., Lee K., andToutanova K.Bert: Pre-training of deep bidirectional transformers for language understanding.arXiv preprint arXiv:1810.04805, 2018. [37] Danka, T. and Horvath, P. modAL: A modular active learning framework for Python.arXiv preprint arXiv:1805.00979, 2018. [38] Hastie T., Rosset S., Zhu J., andZou H.Multi-class adaboost. [39] Chawla N.V., Bowyer K.W., Hall L.O., andKegelmeyer W.P.SMOTE: synthetic minority over-sampling technique. [40] Fernández A., Garcia S., Herrera F., andChawla N.V.SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. [41] Tan X., Su S., Huang Z., Guo X., Zuo Z., Sun X., andLi L.Wireless sensor networks intrusion detection based on SMOTE and the random forest algorithm. [42] Revathi, S. and Malathi, A.A detailed analysis on NSL-KDD dataset using various machine learning techniques for intrusion detection. [43] Bhuyan M.H., Bhattacharyya D.K., andKalita J.K.Network anomaly detection: methods, systems and tools. [44] He, H. and Garcia, E.A.Learning from imbalanced data. [45] Huang S., Liu Y., Fung C., An W., He R., Zhao Y., Yang H., andLuan Z.A gated few-shot learning model for anomaly detection. In |
[1] | C. Rohith Bhat and Madhusundar Nelson. Artificial Intelligence Based Credit Card Fraud Detection for Online Transactions Optimized with Sparrow Search Algorithm [J]. Int J Performability Eng, 2023, 19(9): 624-632. |
[2] | Savita Khurana, Gaurav Sharma, and Bhawna Sharma. Hybrid Machine Learning Model for Load Prediction in Cloud Environment [J]. Int J Performability Eng, 2023, 19(8): 507-515. |
[3] | K. Eswara Rao, Bala Murali Pydi, T. Panduranga Vital, P. Annan Naidu, U. D. Prasann, and T. Ravikumar. An Advanced Machine Learning Approach for Student Placement Prediction and Analysis [J]. Int J Performability Eng, 2023, 19(8): 536-546. |
[4] | Babaljeet Kaur and Shalli Rani. Are the Customers Receiving Exact Recommendations from the E-Commerce Companies? Towards the Identification of Gray Sheep Users Using Personality Parameters [J]. Int J Performability Eng, 2023, 19(7): 425-433. |
[5] | Kshitij Kumar Sinha, Manoj Mathur, and Arun Sharma. Suitability Index Prediction for Residential Apartments Through Machine Learning [J]. Int J Performability Eng, 2023, 19(7): 434-442. |
[6] | Manpreet Kaur and Shalli Rani. Recommender System: Towards Identification of Shilling Attacks in Rating System Using Machine Learning Algorithms [J]. Int J Performability Eng, 2023, 19(7): 443-451. |
[7] | Srishti Bhugra and Puneet Goswami. Exploratory Review of Machine Learning-Based Software Component Reusability Prediction [J]. Int J Performability Eng, 2023, 19(7): 452-461. |
[8] | Harsha Gaikwad, Sanil Gandhi, Arvind Kiwelekar, and Manjushree Laddha. Analyzing Brain Signals for Predicting Students’ Understanding of Online Learning: A Machine Learning Approach [J]. Int J Performability Eng, 2023, 19(7): 462-470. |
[9] | Rakesh Kumar, Sunny Arora, Ashima Arya, Neha Kohli, Vaishali Arya, and Ekta Singh. Ensemble Learning for Appraising English Text Readability using Gompertz Function [J]. Int J Performability Eng, 2023, 19(6): 388-396. |
[10] | Pranshu Kumar Soni and Leema Nelson. PCP: Profit-Driven Churn Prediction using Machine Learning Techniques in Banking Sector [J]. Int J Performability Eng, 2023, 19(5): 303-311. |
[11] | Ramneet Kaur, Deepali Gupta, and Mani Madhukar. Learner-Centric Hybrid Filtering-Based Recommender System for Massive Open Online Courses [J]. Int J Performability Eng, 2023, 19(5): 324-333. |
[12] | Mahima Yadav and Ishan Kumar. Image Processing-Based Transliteration from Hindi to English [J]. Int J Performability Eng, 2023, 19(5): 334-341. |
[13] | Harshita Batra and Leema Nelson. DCADS: Data-Driven Computer Aided Diagnostic System using Machine Learning Techniques for Polycystic Ovary Syndrome [J]. Int J Performability Eng, 2023, 19(3): 193-202. |
[14] | Shobhanam Krishna and Sumati Sidharth. AI-Powered Workforce Analytics: Maximizing Business and Employee Success through Predictive Attrition Modelling [J]. Int J Performability Eng, 2023, 19(3): 203-215. |
[15] | Bhagirath, Neetu Mittal, and Sushil Kumar. Impact of Real Time Fraud Prevention on Online Resale Platform using Machine Learning and Device Fingerprint Techniques [J]. Int J Performability Eng, 2023, 19(2): 94-104. |
|