[1] Zhang, J. and Lee, J.A review on prognostics and health monitoring of Li-ion battery.Journal of power sources. 196(15), pp.6007-6014, 2011. [2] Berecibar M., Gandiaga I., Villarreal I., Omar N., Van Mierlo, J., and Van den Bossche, P. Critical review of state of health estimation methods of Li-ion batteries for real applications.Renewable and Sustainable Energy Reviews. 56, pp.572-587, 2016. [3] Nuhic A., Terzimehic T., Soczka-Guth, T., Buchholz, M., and Dietmayer, K. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods.Journal of power sources. 239, pp.680-688, 2013. [4] Ecker M., Sabet P.S., andSauer D.U.Influence of operational condition on lithium plating for commercial lithium-ion batteries-Electrochemical experiments and post-mortem-analysis.Applied energy. 206, pp.934-946, 2017. [5] Patil M.A., Tagade P., Hariharan K.S., Kolake S.M., Song T., Yeo T., andDoo S.A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation.Applied energy, 159, pp.285-297, 2015. [6] Zhang S., Guo X., Dou X., andZhang X.A rapid online calculation method for state of health of lithium-ion battery based on coulomb counting method and differential voltage analysis. Journal of Power Sources. 479, pp. 228740, 2020. [7] Hannan M.A., Lipu M.H., Hussain A., andMohamed A.A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations.Renewable and Sustainable Energy Reviews. 78, pp.834-854, 2017. [8] Rastegarpanah A., Hathaway J., Ahmeid M., Lambert S., Walton A., andStolkin R.A rapid neural network-based state of health estimation scheme for screening of end of life electric vehicle batteries.Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 235(3), pp.330-346, 2021. [9] Barai A., Uddin K., Dubarry M., Somerville L., McGordon, A., Jennings, P., and Bloom, I. A comparison of methodologies for the non-invasive characterisation of commercial Li-ion cells.Progress in Energy and Combustion Science. 72, pp.1-31, 2019. [10] Aykol M., Herring P., andAnapolsky A.Machine learning for continuous innovation in battery technologies.Nature Reviews Materials. 5(10), pp.725-727, 2020. [11] Zhao Q., Qin X., Zhao H., andFeng W.A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries.Microelectronics Reliability. 85, pp.99-108, 2018. [12] Zheng, X. and Fang, H.An integrated unscented Kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction. Reliability Engineering & System Safety.144, pp.74-82. 2015. [13] Li Y., Liu K., Foley A.M., Zülke A., Berecibar M., Nanini-Maury, E., Van Mierlo, J., and Hoster, H.E. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renewable and sustainable energy reviews. 113, pp.109254, 2019. [14] Li P., Zhang Z., Xiong Q., Ding B., Hou J., Luo D., Rong Y., andLi S.State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network. Journal of power sources. 459, pp.228069, 2020. [15] Vidal C., Malysz P., Kollmeyer P., andEmadi A.Machine learning applied to electrified vehicle battery state of charge and state of health estimation: State-of-the-art.IEEE Access. 8, pp.52796-52814, 2020. [16] Li X., Zhang L., Wang Z., andDong P.Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks.Journal of Energy Storage. 21, pp.510-518, 2019. [17] Choi Y., Ryu S., Park K., andKim H.Machine learning-based lithium-ion battery capacity estimation exploiting multi-channel charging profiles.Ieee Access. 7, pp.75143-75152, 2019. [18] Fan Y., Xiao F., Li C., Yang G., andTang X.A novel deep learning framework for state of health estimation of lithium-ion battery. Journal of Energy Storage. 32, pp.101741, 2020. [19] Park K., Choi Y., Choi W.J., Ryu H.Y., andKim H.LSTM-based battery remaining useful life prediction with multi-channel charging profiles.Ieee Access. 8, pp.20786-20798, 2020. [20] Zhang, K., Peng, Z.H.A.O., Canfei, S.U.N., Youren, W.A.N.G., and Zewang, C.H.E.N. Remaining useful life prediction of aircraft lithium-ion batteries based on F-distribution particle filter and kernel smoothing algorithm.Chinese Journal of Aeronautics. 33(5), pp.1517-1531, 2020. [21] Prognostics Center of Excellence, Data Repository, https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/, accessed May 2021. [22] Severson K.A., Attia P.M., Jin N., Perkins N., Jiang B., Yang Z., Chen M.H., Aykol M., Herring P.K., Fraggedakis D., andBazant M.Z.Data-driven prediction of battery cycle life before capacity degradation.Nature Energy. 4(5), pp.383-391, 2019. [23] Dubarry M., Truchot C., andLiaw B.Y.Cell degradation in commercial LiFePO4 cells with high-power and high-energy designs.Journal of Power Sources. 258, pp.408-419, 2014. [24] Pastor-Fernández, C., Yu, T.F., Widanage, W.D., and Marco, J. Critical review of non-invasive diagnosis techniques for quantification of degradation modes in lithium-ion batteries.Renewable and Sustainable Energy Reviews. 109, pp.138-159, 2019. [25] Li W., Sengupta N., Dechent P., Howey D., Annaswamy A., andSauer D.U.Online capacity estimation of lithium-ion batteries with deep long short-term memory networks. Journal of Power Sources. 482, pp.228863, 2021. [26] M. Kirk.Thoughtful machine learning, First edition.O'Reilly Media, Inc. 2014. [27] I. Goodfellow., Y. Bengio., andA. Courville.Deep Learning pre-pub version. MIT Press.. 2016. [28] Maas A.L., Hannun A.Y., andNg A.Y.Rectifier nonlinearities improve neural network acoustic models. In Proc. icml. 30(1), pp.3, 2013. [29] Kaur K., Garg A., Cui X., Singh S., andPanigrahi B.K.Deep learning networks for capacity estimation for monitoring SOH of Li‐ion batteries for electric vehicles.International Journal of Energy Research. 45(2), pp.3113-3128, 2021. [30] Wu J., Zhang C., andChen Z.An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks.Applied energy. 173, pp.134-140, 2016. [31] Zhu S., Zhao N., andSha J.Predicting battery life with early cyclic data by machine learning. Energy Storage. 1(6), pp.e989, 2019. |