1. Liu X., He Q., Tian Y., Lee W.C., McPherson, J., and Han, J. Event-based Social Networks: Linking the Online and Offline Social Worlds. InProceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1032-1040, 2012. 2. She, J., Tong, Y., and Chen, L. Utility-aware Social Event-participant Planning. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1629-1643, 2015. 3. Ahmed A.M., Qiu T., Xia F., Jedari B., andAbolfazli S.Event-based Mobile Social Networks: Services, Technologies, and Applications. IEEE Access, vol. 2, pp. 500-513, 2014. 4. Qiao Z., Zhang P., Zhou C., Cao Y., Guo L., andZhang Y.Event Recommendation in Event-based Social Networks. InTwenty-Eighth AAAI Conference on Artificial Intelligence, 2014. 5. Khrouf, H. and Troncy, R.Topical Community Detection in Event-based Social Network.arXiv preprint arXiv:1803.04354, 2018. 6. Cao J., Zhu Z., Shi L., Liu B., andMa Z.Multi-feature Based Event Recommendation in Event-based Social Network. International Journal of Computational Intelligence Systems, vol. 11, no. 1, pp. 618-633, 2018. 7. Bok K., Lee S., Choi D., Lee D., andYoo J.Recommending Personalized Events Based on User Preference Analysis in Event Based Social Networks. Electronic Commerce Research, vol. 21, no. 3, pp.707-725, 2021. 8. Liang Y., Huang C., Bao X., andXu K.Sequential Dynamic Event Recommendation in Event-based Social Networks: an Upper Confidence Bound Approach. Information Sciences, vol. 542, pp.1-23, 2021 9. Cheng Y., Yuan Y., Chen L., Giraud-Carrier, C., Wang, G., and Li, B. Event-participant and Incremental Planning over Event-based Social Networks. IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 2, pp. 474-488, 2019. 10. Zhang J., Jiang W., Zhang J., Wu J., andWang G.Exploring Weather Data to Predict Activity Attendance in Event-based Social Network: from the Organizer’s View. ACM Transactions on the Web (TWEB), vol. 15, no. 2, pp.1-25, 2021. 11. Li K., Lu W., Bhagat S., Lakshmanan L.V., andYu C.On Social Event Organization. InProceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1206-1215, 2014. 12. Armenatzoglou, N., Pham, H., Ntranos, V., Papadias, D., and Shahabi, C. Real-time Multi-criteria Social Graph Partitioning: a Game Theoretic Approach. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1617-1628, 2015 13. Tong Y., She J., andMeng R.Bottleneck-aware Arrangement over Event-based Social Networks: the Max-min Approach. World Wide Web, vol. 19, no. 6, pp. 1151-1177, 2016. 14. Cao, J. and Sun, W.Dynamic Learning of Sequential Choice Bandit Problem Under Marketing Fatigue. In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, No. 01, pp. 3264-3271, 2019. 15. Macedo A.Q., Marinho L.B., andSantos R.L.Context-aware Event Recommendation in Event-based Social Networks. InProceedings of the 9th ACM Conference on Recommender Systems, pp. 123-130, 2015. 16. Pham T.A.N., Li, X., Cong, G., and Zhang, Z. A General Graph-based Model for Recommendation in Event-based Social Networks. In2015 IEEE 31st international conference on data engineering, IEEE, pp. 567-578, 2015. 17. Yin H., Cui B., Chen L., Hu Z., andZhang C.Modeling location-based user rating profiles for personalized recommendation. ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 9, no. 3, pp. 1-41, 2015. 18. Zhang, W. and Wang, J.A Collective Bayesian Poisson Factorization Model for Cold-start Local Event Recommendation. InProceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, pp. 1455-1464, 2015. 19. She J., Tong Y., Chen L., andCao C.C.Conflict-aware Event-participant Arrangement and Its Variant for Online Setting. IEEE Transactions on Knowledge and Data Engineering, vol. 28, no. 9, pp. 2281-2295, 2016. 20. Auer P.,Cesa-Bianchi, N., and Fischer, P. Finite-time Analysis of the Multiarmed Bandit Problem. Machine learning, vol. 47, no. 2, pp. 235-256, 2002. 21. Sutton, R.S. and Barto, A.G.Reinforcement learning: An introduction. MIT press, 2018. 22. Chen W., Hu W., Li F., Li J., Liu Y., andLu P.Combinatorial Multi-armed Bandit with General Reward Functions. InAdvances in Neural Information Processing Systems, pp. 1651-1659, 2016. 23. Chen W., Wang Y., andYuan Y.Combinatorial Multi-armed Bandit: General Framework and Applications. InInternational Conference on Machine Learning, PMLR, pp. 151-159, 2013. 24. Cheung, W.C. and Simchi-Levi, D. Thompson Sampling for Online Personalized Assortment Optimization Problems with Multinomial Logit Choice Models.Available at SSRN 3075658, 2017. 25. Bian J., Long B., Li L., Moon T., Dong A., andChang Y.Exploiting User Preference for Online Learning in Web Content Optimization Systems. ACM Transactions on Intelligent Systems and Technology (TIST), vol. 5, no. 2, pp. 1-23, 2014. 26. Agarwal D., Chen B.C., Elango P., Motgi N., Park S.T., Ramakrishnan R., Roy S., andZachariah J.Online Models for Content Optimization. InAdvances in Neural Information Processing Systems, pp. 17-24, 2009. 27. She, J., Tong, Y., Chen, L., and Song, T. Feedback-aware Social Event-participant Arrangement. In Proceedings of the 2017 ACM International Conference on Management of Data, pp. 851-865, 2017. 28. Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved Algorithms for Linear Stochastic Bandits. Advances in neural information processing systems, vol. 24, pp. 2312-2320, 2011. 29. Chu W., Li L., Reyzin L., andSchapire R.Contextual Bandits with Linear Payoff Functions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, pp. 208-214, 2011. 30. Ou M., Li N., Zhu S., andJin R.Multinomial Logit Bandit with Linear Utility Functions.arXiv preprint arXiv:1805.02971, 2018. |