1. Ju S., Lim H., Ma J.W., Kim S., Lee K., Zhao S., andHeo J.Optimal County-level Crop Yield Prediction Using Modis-based Variables and Weather Data: a Comparative Study on Machine Learning Models. Agricultural and Forest Meteorology, vol. 307, pp. 108530, 2021. 2. Tadesse K., Habte D., Admasu W., Admasu A., Abdulkadir B., Tadesse A., Mekonnen A., andDebebe A.Effects of Preceding Crops and Nitrogen Fertilizer on the Productivity and Quality of Malting Barley in Tropical Environment. Heliyon, vol. 7, no. 5, pp. e07093, 2021. 3. Kuzman B., Petković B., Denić N., Petković D., Ćirković B., Stojanović J., andMilić M.Estimation of Optimal Fertilizers for Optimal Crop Yield by Adaptive Neuro Fuzzy Logic. Rhizosphere, vol. 18, pp. 100358, 2021. 4. Elavarasan, D. and Vincent, P.D.Crop Yield Prediction Using Deep Reinforcement Learning Model for Sustainable Agrarian Applications. IEEE Access, vol. 8, pp. 86886-86901, 2020. 5. Tomar V., Mandal V.P., Srivastava P., Patairiya S., Singh K., Ravisankar N., Subash N. and Kumar P.Rice Equivalent Crop Yield Assessment using MODIS Sensors’ based MOD13A1-NDVI Data. IEEE Sensors Journal, vol. 14, no. 10, pp. 3599-3605, 2014. 6. Hu W.J., Fan J., Du Y.X., Li B.S., Xiong N. and Bekkering E.MDFC-ResNet: An Agricultural IoT System to Accurately Recognize Crop Diseases. IEEE Access, vol. 8, pp. 115287-115298, 2020. 7. Momesso, L., Crusciol, C.A.C., Cantarella, H., Tanaka, K.S., Kowalchuk, G.A., and Kuramae, E.E. Optimizing Cover Crop and Fertilizer Timing for High Maize Yield and Nitrogen Cycle Control. Geoderma, vol. 405, pp. 115423, 2022 8. Shan A., Pan J., Kang K.J., Pan M., Wang G., Wang M., He Z. and Yang X.Effects of Straw Return with N Fertilizer Reduction on Crop Yield, Plant Diseases and Pests and Potential Heavy Metal Risk in a Chinese Rice Paddy: a Field Study of 2 Consecutive Wheat-rice Cycles. Environmental Pollution, vol. 288, pp. 117741, 2021 9. Yang S., Hu L., Wu H., Ren H., Qiao H., Li P. and Fan W.Integration of Crop Growth Model and Random Forest for Winter Wheat Yield Estimation from Uav Hyperspectral Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 6253-6269, 2021 10. Geetha V., Punitha A., Abarna M., Akshaya M., Illakiya S., andJanani A.P.An Effective Crop Prediction Using Random Forest Algorithm. In2020 International Conference on System, Computation, Automation and Networking (ICSCAN), IEEE, pp. 1-5, 2020 11. Mallikarjunaswamy S., Sharmila N., Maheshkumar D., Komala M., andMahendra H.N.Implementation of an Effective Hybrid Model for Islanded Microgrid Energy Management. Indian Journal of Science and Technology, vol. 13, no. 27, pp.2733-2746, 2020 12. Satish P., Srikantaswamy M., andRamaswamy N.K.A Comprehensive Review of Blind Deconvolution Techniques for Image Deblurring. Traitement du Signal, vol. 37, no. 3, 2020. 13. Gupta R., Sharma A.K., Garg O., Modi K., Kasim S., Baharum Z., Mahdin H., andMostafa S.A.WB-CPI: Weather Based Crop Prediction in India Using Big Data Analytics. IEEE Access, vol. 9, pp. 137869-137885, 2021. 14. Liao J., Wang Y., Zhu D., Zou Y., Zhang S. and Zhou H.Automatic Segmentation of Crop/Background Based on Luminance Partition Correction and Adaptive Threshold. IEEE Access, vol. 8, pp. 202611-202622, 2020. 15. Pooja S., Mallikarjunaswamy S., andSharmila N.Adaptive Sparsity through Hybrid Regularization for Effective Image Deblurring. Indian Journal of Science and Technology, vol. 14, no. 24, pp. 2051-2068, 2021. 16. Zhang, H., Xu, C. and Wang, J.Fertilizer Strength Prediction Model Based on Shape Characteristics.IEEE Access, 2021. |