Int J Performability Eng ›› 2022, Vol. 18 ›› Issue (4): 251-262.doi: 10.23940/ijpe.22.04.p3.251262
Previous Articles Next Articles
Kai-Wen Chen and Chin-Yu Huang*
Submitted on
;
Revised on
;
Accepted on
Contact:
* E-mail address: cyhuang@cs.nthu.edu.tw
Kai-Wen Chen and Chin-Yu Huang. Automatic Categorization of Software with Document Clustering Methods and Voting Mechanism [J]. Int J Performability Eng, 2022, 18(4): 251-262.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1. https://github.com, accessed on 2 July 2020. 2. https://sourceforge.net, accessed on 2 July 2020. 3. MLinares-Vásquez, M., McMillan, C., Poshyvanyk, D., and Grechanik, M. On Using Machine Learning to Automatically Classify Software Applications into Domain Categories. 4. McMillan, C., Linares-Vasquez, M., Poshyvanyk, D., and Grechanik, M. Categorizing Software Applications for Maintenance. In 5. Ugurel S., Krovetz R., andGiles C.L.What's the Code? Automatic Classification of Source Code Archives. In 6. Chen, K.W. and Huang, C.Y.A Study of Applying Unsupervised Learning Methods for Document Clustering and Automatic Categorization of Software. In 7. Hartigan, J.A. and Wong, M.A.Algorithm AS 136: A K-means Clustering Algorithm. 8. Lee, D. and Seung, H.S.Algorithms for Non-negative Matrix Factorization. 9. Ng A., Jordan M., andWeiss Y.On Spectral Clustering: Analysis and an Algorithm. 10. Cui, X., Potok, T.E., and Palathingal, P. Document Clustering using Particle Swarm Optimization. In 11. Sculley D.Web-scale K-means Clustering. In 12. Xu W., Liu X., andGong Y.Document Clustering based on Non-negative Matrix Factorization. In 13. Shahnaz F., Berry M.W., Pauca V.P., andPlemmons R.J.Document Clustering using Nonnegative Matrix Factorization. 14. Cai D., He X., andHan J.Document Clustering using Locality Preserving Indexing. 15. Kumar A., Rai P., andDaume H.Co-regularized Multi-view Spectral Clustering. 16. Bagga, A. and Baldwin, B.Entity-based Cross-document Coreferencing using the Vector Space Model. InCOLING 1998 Volume 1: The 17th International Conference on Computational Linguistics, 1998. 17. Amigó E., Gonzalo J., Artiles J., andVerdejo F.A Comparison of Extrinsic Clustering Evaluation Metrics based on Formal Constraints. 18. Hubert, L. and Arabie, P.Comparing Partitions. 19. O'Grady, K.E. and Medoff, D.R. Categorical Variables in Multiple Regression: Some Cautions. 20. Campello R.J.A Fuzzy Extension of the Rand Index and Other Related Indexes for Clustering and Classification Assessment. 21. Hullermeier, E. and Rifqi, M. A Fuzzy Variant of the Rand Index for Comparing Clustering Structures. In 22. Avizienis A.The Methodology of N-version Programming. 23. T. Dietterich, Ensemble Learning, The Handbook of Brain Theory and Neural Networks 2, Cambridge, MA, The MIT Press, pp. 110-125, 2002. 24. LeClair, A., Eberhart, Z., and McMillan, C. Adapting Neural Text Classification for Improved Software Categorization. In 25. Kawaguchi S., Garg P.K., Matsushita M., andInoue K.Mudablue: an Automatic Categorization System for Open Source Repositories. 26. Tian K., Revelle M., andPoshyvanyk D.Using Latent Dirichlet Allocation for Automatic Categorization of Software. In 27. Yang, C.Z. and Tu, M.H. Lacta: An Enhanced Automatic Software Categorization on the Native Code of Android Applications. In 28. Thomas S.W., Adams B., Hassan A.E., andBlostein D.Studying Software Evolution Using Topic Models. 29. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., andVanderplas J.Scikit-learn: Machine Learning in Python. 30. Lloyd S.Least Squares Quantization in PCM. 31. Selim, S.Z. and Ismail, M.A.K-means-type algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality. 32. Arthur, D. and Vassilvitskii, S., 33. Berry M.W., Browne M., Langville A.N., Pauca V.P. and Plemmons R.J.Algorithms and Applications for Approximate Nonnegative Matrix Factorization. 34. Lee, D. and Seung, H.S.Algorithms for Non-negative Matrix Factorization. 35. Boutsidis, C. and Gallopoulos, E.SVD Based Initialization: a Head Start for Nonnegative Matrix Factorization. 36. Févotte, C. and Idier, J.Algorithms for Nonnegative Matrix Factorization with the β-divergence. 37. Stewart, G.W. and Sun, J.G.Matrix Perturbation Theory Academic Press. San Diego, 1990. 38. Von Luxburg, U. A Tutorial on Dpectral Vlustering. 39. Shi, J. and Malik, J.Normalized Cuts and Image Segmentation. 40. Bird S., Klein E., andLoper E. 41. Neto J.L., Santos A.D., Kaestner C.A., Alexandre N., andSantos D. Document Clustering and Text Summarization, 2000. 42. Hammouda, K.M. and Kamel, M.S.Efficient Phrase-based Document Indexing for Web Document Clustering. 43. Han J., Pei J., andKamber M. 44. Bollegala D., Matsuo Y., andIshizuka M.Measuring Semantic Similarity Between Words Using Web Search Engines. 45. Rosenberg, A. and Hirschberg, J. V-measure: A Conditional Entropy-based External Cluster Evaluation Measure. In 46. Rand W.M.Objective Criteria for the Evaluation of Clustering Methods. 47. Lutov A., Khayati M., andCudré-Mauroux, P. Accuracy Evaluation of Overlapping and Multi-resolution Clustering Algorithms on Large Datasets. In |
[1] | Deepak Kumar, Chaman Verma, Purushottam Sharma, Deeksha Kumari, and Zoltán Illés. Demographic and Clinical Factors Role Identification in Stroke Risk and Subtype Prediction [J]. Int J Performability Eng, 2023, 19(6): 368-378. |
[2] | Ashima Arya and Sanjay Kumar Malik. Software Fault Prediction using K-Mean-Based Machine Learning Approach [J]. Int J Performability Eng, 2023, 19(2): 133-143. |
[3] | Arvind Kumar Mishra, Renuka Nagpal, Kirti Seth, and Rajni Sehgal. Maintainability of Service-Oriented Architecture using Hybrid K-means Clustering Approach [J]. Int J Performability Eng, 2023, 19(1): 33-42. |
[4] | Kajal Dwivedi, Ramanathan Lakshmanan, and Rajeshkannan Regunathan. K-means Under-Sampling for Hypertension Prediction using NHANES Dataset [J]. Int J Performability Eng, 2021, 17(8): 733-740. |
[5] | M. Muzammil Parvez, J. Shanmugam, and V.S. Ghali. Fuzzy C-based Automatic Defect Detection using Barker Coded Thermal Wave Imaging [J]. Int J Performability Eng, 2021, 17(5): 484-490. |
[6] | Huaiguang Wu, Pengjie Xie, Ming Cheng, and Hongwei Tao. A Hybrid Model of Predicting Breast Cancer Survivability based on Specific Stages [J]. Int J Performability Eng, 2020, 16(8): 1183-1192. |
[7] | Chulei Zhang, Honghua Cui, Yizhang Wang, Tiantian Zhao, and You Zhou. LDKM: An Improved K-Means Algorithm with Linear Fitting Density Peak [J]. Int J Performability Eng, 2020, 16(3): 454-461. |
[8] | Lian Yu, Lei Zhang, Cong Tan, Bei Zhao, Chen Zhang, and Lijun Liu. Repeatedly Coding Inter-Packet Delay for Tracking Down Network Attacks [J]. Int J Performability Eng, 2020, 16(2): 265-283. |
[9] | Zhiguo Liu and Changqing Ren. Unknown Protocol Data Frame Classification Algorithm based on Improved K-Means [J]. Int J Performability Eng, 2020, 16(11): 1721-1731. |
[10] | Qinggang Wu and Xueming Zhai. Remote Sensing Object Detection via an Improved YOLO Network [J]. Int J Performability Eng, 2020, 16(11): 1803-1813. |
[11] | Mingzhu Li and Yufeng Deng. A Machine Learning-based Building Operational Pattern Identification [J]. Int J Performability Eng, 2020, 16(11): 1835-1844. |
[12] | Wenjie Li. Imbalanced Data Optimization Combining K-Means and SMOTE [J]. Int J Performability Eng, 2019, 15(8): 2173-2181. |
[13] | Ming Lei, Bin Wen, Jianhou Gan, and Jun Wang. Clustering Algorithm of Ethnic Cultural Resources based on Spark [J]. Int J Performability Eng, 2019, 15(3): 756-762. |
[14] | Yan Zhang, Li Qiao, Xingya Wang, Jingying Cai, and Xuefei Liu. Automatic Software Testing Target Path Selection using K-Means Clustering Algorithm [J]. Int J Performability Eng, 2019, 15(10): 2667-2674. |
[15] | Wenqian Shang, Kaixiang Wang, and Junjie Huang. An Improved Tensor Decomposition Model for Recommendation System [J]. Int J Performability Eng, 2018, 14(9): 2116-2126. |
|