1. Trivedi, K.S, Probability and Statistics with Reliability, Queueing, and Computer Sciences Applications, John Wiley & Sons, New York, 2nd edition, 2001. 2. Dharmaraja S., Trivedi K.S., andLogothetis D., Performance Modeling of Wireless Networks with Generally Distributed Handoff Interarrival Times. Computer Communications, vol. 26, no. 15, pp. 1747-1755, 2003. 3. Choudhury, A. and Basak, A.Statistical Inference on Traffic Intensity in an M/M/1 Queueing System. International Journal of Management Science and Engineering Management, vol.13, no. 4, pp. 274-279, 2018. 4. Stasiak M., Gabowski M., Wisniewski A., andZwierzykowski P.Modelling and Dimensioning of Mobile Networks: from GSM to LTE, Wiley, 2011. 5. Fischer M.J., Gross D., Masi D.B., andShortle J.F.Analyzing the Waiting Time Process in Internet Queueing Systems with the Transform Approximation Method. The Telecommunications Review, vol. 12, pp. 21-32, 2001. 6. Bhat U. N.An introduction to queueing theory: modeling analysis in applications, Second Edition. Birkhauser Boston, USA, 2008. 7. Clarke A.B.Maximum Likelihood Estimates in a Simple Queue. The Annals of Mathematical Statistics, vol. 28, no. 4, pp. 1036-1040, 1957. 8. Bhat, U.N. and Basawa, I.V.Maximum Likelihood Estimation in Queueing Systems. In Advances on Methodological and Applied Aspects of Probability and Statistics, CRC Press, pp. 13-30, 2019. 9. Dieleman N.A.Data-Driven Fitting of the G/G/1 Queue. Journal of Systems Science and Systems Engineering, vol.30, no. 1, pp. 17-28., 2021. 10. Krishnan, T. and McLachlan, G.J. The EM Algorithm and Extensions, John Wiley and Sons, 1997. 11. Buchholz P.An EM-algorithm for MAP Fitting from Real Traffic Data. In International Conference on Modelling Techniques and Tools for Computer Performance Evaluation. Springer, Berlin, Heidelberg, pp. 218-236, 2003. 12. Okamura H., Dohi T., andTrivedi K.S.Markovian Arrival Process Parameter Estimation with Group Data. IEEE/ACM Transactions on networking, vol. 17, no. 4, pp.1326-1339, 2009. 13. Li C., Okamura H., andDohi T.Parameter Estimation of Mt/M/1/K Queueing Systems with Utilization Data. IEEE Access, vol.7, pp. 42664-42671. 2019. 14. Ross J.V., Taimre T., andPollett P.K.Estimation for Queues from Queue Length Data. Queueing Systems, vol. 55, no. 2, pp.131-138, 2007. 15. Liu H., Liang W., Rai L., Teng K., andWang S.A Real-time Queue Length Estimation Method Based on Probe Vehicles in CV Environment. IEEE Access, vol. 7, pp. 20825-20839, 2019. 16. Rothkopf, M.H. and Oren, S.S.A Closure Approximation for the Nonstationary M/M/s Queue. Management Science, vol. 25, no. 6, pp. 522-534, 1979. 17. Heyman, D.P. and Whitt, W.The Asymptotic Behavior O Queues with Time-varying Arrival Rates. Journal of Applied Probability, vol. 21, no. 1, pp.143-156, 1984. 18. Wang T.Y., Ke J.C., Wang K.H., andHo S.C.Maximum Likelihood Estimates and Confidence Intervals of an M/M/R Queue with Heterogeneous Servers. Mathematical Methods of Operations Research, vol. 63, no. 2, pp. 371-384, 2006. 19. Dempster A.P., Laird N.M., andRubin D.B.Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society: Series B (Methodological), vol. 39, no. 1, pp. 1-22, 1977. 20. Wu C.J.,On the Convergence Properties of the EM Algorithm.The Annals of statistics, pp. 95-103, 1983. 21. Rydén T.An EM Algorithm for Estimation in Markov-modulated Poisson Processes. Computational Statistics & Data Analysis, vol. 21, no. 4, pp. 431-447, 1996. 22. Basawa I., Bhat U., andZhou J.Parameter Estimation in Queueing Systems using Partial Information.Ohio State University, Tech. Rep, 2006. 23. Armero, C. and Bayarri, M.J.A Bayesian Analysis of a Queueing System with Unlimited Service. Journal of Statistical Planning and Inference, vol. 58, no. 2, pp. 241-261, 1997. 24. Armero, C. and Conesa, D.Bayesian Hierarchical Models in Manufacturing Bulk Service Queues. Journal of statistical planning and inference, vol. 136, no. 2, pp. 335-354, 2006 25. Pelikan M.Hierarchical Bayesian Optimization Algorithm. In Hierarchical Bayesian optimization algorithm, Springer, Berlin, Heidelberg, pp. 105-129, 2005. 26. Nilsson H., Rieskamp J., andWagenmakers E.J.Hierarchical Bayesian Parameter Estimation for Cumulative Prospect Theory. Journal of Mathematical Psychology, vol. 55, no. 1, pp. 84-93, 2011. 27. Cruz F.R., Quinino R.C., andHo L.L.Bayesian Estimation of Traffic Intensity based on Queue Length in a Multi-server M/M/s Queue. Communications in Statistics-Simulation and Computation, vol. 46, no. 9, pp. 7319-7331, 2017. 28. Kiapour A.Bayesian Estimation of the Expected Queue Length of a System M/M/1 with Certain and Uncertain Priors.Communications in Statistics-Theory and Methods, pp.1-8, 2020. |