1. Bizer C., Heese R., Mochol M., Oldakowski R., Tolksdorf R., andEckstein R.The Impact of Semantic Web Technologies on Job Recruitment Processes. In Wirtschaftsinformatik, Physica, Heidelberg, pp. 1367-1381, 2005. 2. Mochol, M., Wache, H. and Nixon, L.Improving the Accuracy of Job Search with Semantic Techniques. In International Conference on Business Information Systems, Springer, Berlin, Heidelberg, pp. 301-313, 2007. 3. Ricci F., Rokach L., andShapira B.Recommender Systems: Introduction and Challenges. In Recommender systems handbook, Springer, Boston, MA, pp. 1-34, 2015. 4. Al-Otaibi, S. T., and Ykhlef, M. A Survey of Job Recommender Systems. International Journal of Physical Sciences, vol. 7, no. 29, pp. 5127-5142, 2012 5. Tran M. L., Nguyen A. T., Nguyen Q. D., andHuynh T. A Comparison Study for Job Recommendation. In2017 International Conference on Information and Communications (ICIC), IEEE, pp. 199-204, 2017 6. Dhameliya, J.,Desai, N. Job Recommender Systems: a Survey. In2019 Innovations in Power and Advanced Computing Technologies (i-PACT), IEEE, vol. 1, pp. 1-5, 2019. 7. Chen J., Zhang C., andNiu Z.A Two-step Resume Information Extraction Algorithm. Mathematical Problems in Engineering, 2018. 8. Kessler R.,Torres-Moreno, J. M., and El-Bèze, M. E-Gen: Automatic Job Offer Processing System for Human Resources. In Mexican international conference on artificial intelligence, Springer, Berlin, Heidelberg, pp. 985-995, 2007. 9. Ahmed Awan, M. N., Khan, S., Latif, K., and Khattak, A. M. A New Approach to Information Extraction in User-Centric E-Recruitment Systems. Applied Sciences, vol. 9, no. 14, 2019. 10. Zhang N. R.Hidden Markov Models for Information Extraction. Technical Report. Stanford Natural Language Processing Group, 2001. 11. Lafferty J.,McCallum, A., and Pereira, F. C. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data, 2001. 12. Singh A., Rose C., Visweswariah K., Chenthamarakshan V., andKambhatla N.PROSPECT: A System for Screening Candidates for Recruitment. In Proceedings of the 19th ACM international conference on Information and knowledge management, pp. 659-668, 2010. 13. Yu K., Guan G., andZhou M.Resume Information Extraction with Cascaded Hybrid Model. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05), pp. 499-506, 2005. 14. Martinez-Rodriguez, J. L., Hogan, A., and Lopez-Arevalo, I. Information Extraction Meets the Semantic Web: a Survey. Semantic Web, vol. 11, no. 2, pp. 255-335, 2020. 15. Senthil Kumaran, V., and Sankar, A. Towards an Automated System for Intelligent Screening of Candidates for Recruitment Using Ontology Mapping (EXPERT). International Journal of Metadata, Semantics and Ontologies, vol. 8, no. 1, pp. 56-64, 2013. 16. Çelik, D.,Elçi, A.An Ontology-based Information Extraction Approach for Résumés. In Joint international conference on pervasive computing and the networked world, Springer, Berlin, Heidelberg, pp. 165-179, 2012. 17. Guo S., Alamudun F., andHammond T.RésuMatcher: A Personalized Résumé-job Matching System. Expert Systems with Applications, vol. 60, pp. 169-182, 2016. 18. Yahiaoui L., Boufaïda Z., andPrié Y.Semantic Annotation of Documents Applied to E-Recruitment. In SWAP, 2006. 19. Ben Abdessalem Karaa, W., and Mhimdi, N.Using Ontology for Resume Annotation. International Journal of Metadata, Semantics and Ontologies, vol. 6, no. 3-4, pp. 166-174, 2011. 20. Maree M., Kmail A. B., andBelkhatir M.Analysis and Shortcomings of E-recruitment Systems: Towards a Semantics-based Approach Addressing Knowledge Incompleteness and Limited Domain Coverage. Journal of Information Science, vol. 45, no. 6, pp. 713-735, 2019. 21. Leacock, C.,Chodorow, M.Combining Local Context and Wordnet Similarity for Word Sense Identification. WordNet: An electronic lexical database, vol. 49, no. 2, pp. 265-283, 1998. |