1. Korkmaz M.E., Gupta M.K., Li Z., Krolczyk G.M., Kuntoğlu M., Binali R., Yaşar N., andPimenov D.Y.Indirect Monitoring of Machining Characteristics via Advanced Sensor Systems: A Critical Review. The International Journal of Advanced Manufacturing Technology, pp. 1-36, 2022. 2. Pimenov D.Y., Bustillo A., Wojciechowski S., Sharma V.S., Gupta M.K., andKuntoğlu M.Artificial Intelligence Systems for Tool Condition Monitoring in Machining: Analysis and Critical Review. Journal of Intelligent Manufacturing, pp. 1-43, 2022. 3. Serin G., Sener B., Ozbayoglu A.M., andUnver H.O.Review of Tool Condition Monitoring in Machining and Opportunities for Deep Learning. The International Journal of Advanced Manufacturing Technology, vol. 109, no. 3, pp. 953-974, 2020. 4. Sun H., Zhang J., Mo R., andZhang X.In-process Tool Condition Forecasting based on a Deep Learning Method. Robotics and Computer-Integrated Manufacturing, vol. 64, pp. 101924, 2020. 5. Shi C., Panoutsos G., Luo B., Liu H., Li B., andLin X.Using Multiple-feature-spaces-based Deep Learning for Tool Condition Monitoring in Ultraprecision Manufacturing. IEEE Transactions on industrial electronics, vol. 66, no. 5, pp. 3794-3803, 2018. 6. Cheng C., Li J., Liu Y., Nie M., andWang W.Deep Convolutional Neural Network-based In-process Tool Condition Monitoring in Abrasive Belt Grinding. Computers in Industry, vol. 106, pp. 1-13, 2019. 7. Lee C.H., Jwo J.S., Hsieh H.Y., andLin C.S.An Intelligent System for Grinding Wheel Condition Monitoring based on Machining Sound and Deep Learning. IEEE Access, vol. 8, pp. 58279-58289, 2020. 8. Qiao H., Wang T., andWang P.A Tool Wear Monitoring and Prediction System based on Multiscale Deep Learning Models and Fog Computing. The International Journal of Advanced Manufacturing Technology, vol. 108, no. 7, pp.2367-2384, 2020. 9. He Z., Shi T., Xuan J., andLi T.Research on Tool Wear Prediction based on Temperature Signals and Deep Learning. Wear, vol. 478, pp. 203902, 2021. 10. Zhou Y., Zhi G., Chen W., Qian Q., He D., Sun B., andSun W.A New Tool Wear Condition Monitoring Method based on Deep Learning under Small Samples. Measurement, vol. 189, pp. 110622, 2022. 11. Xu X., Wang J., Ming W., Chen M., andAn Q.In-process Tap Tool Wear Monitoring and Prediction using a Novel Model based on Deep Learning. The International Journal of Advanced Manufacturing Technology, vol. 112, no. 1, pp. 453-466, 2021. 12. Cheng M., Jiao L., Yan P., Jiang H., Wang R., Qiu T., andWang X.Intelligent Tool Wear Monitoring and Multi-step Prediction based on Deep Learning Model. Journal of Manufacturing Systems, vol. 62, pp. 286-300, 2022. 13. Liu, T.I. and Jolley, B.Tool Condition Monitoring (TCM) Using Neural Networks. The International Journal of Advanced Manufacturing Technology, vol. 78, no. 9, pp. 1999-2007, 2015. 14. Yang C.L., Chen Z.X., andYang C.Y.Sensor Classification using Convolutional Neural Network by Encoding Multivariate Time Series as Two-dimensional Colored Images. Sensors, vol. 20, no, 1, pp. 168, 2019. 15. Wang K.Intelligent Predictive Maintenance (IPdM) System-Industry 4.0 Scenario. WIT Transactions on Engineering Sciences, vol. 113, pp. 259-268, 2016. 16. Zhang R., Zheng F., andMin W. Sequential Behavioral Data Processing using Deep Learning and the Markov Transition Field in Online Fraud Detection. arXiv preprint arXiv:1808.05329, 2018. 17. Khairnar A., Patange A., Pardeshi S., andJegadeeshwaran R.Supervision of Carbide Tool Condition by Training of Vibration-based Statistical Model using Boosted Trees Ensemble. International Journal of Performability Engineering, vol. 17, no. 2, 2021. 18. Bajaj N.S., Patange A.D., Jegadeeshwaran R., Kulkarni K.A., Ghatpande R.S., andKapadnis A.M.A Bayesian Optimized Discriminant Analysis Model for Condition Monitoring of Face Milling Cutter using Vibration Datasets. Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, vol. 5, no. 2, 2022. 19. Patange, A.D. and Jegadeeshwaran, R.A Machine Learning Approach for Vibration-based Multipoint Tool Insert Health Prediction on Vertical Machining Centre (VMC). Measurement, vol. 173, pp. 108649, 2021. 20. Patange, A.D. and Jegadeeshwaran, R.Application of Bayesian Family Classifiers for Cutting Tool Inserts Health Monitoring on CNC Milling. International Journal of Prognostics and Health Management, vol. 11, no. 2, 2020. 21. Staudemeyer, R.C. and Morris, E.R.Understanding LSTM-- A Tutorial into Long Short-term Memory Recurrent Neural Networks. arXiv preprint arXiv:1909.09586, 2019. 22. Sherstinsky A.Fundamentals of Recurrent Neural Network (RNN) And Long Short-Term Memory (LSTM) Network. Physica D: Nonlinear Phenomena, vol. 404, pp. 132306, 2020. 23. Graves A., Fernández S., andSchmidhuber J.Bidirectional LSTM Networks for Improved Phoneme Classification and Recognition. In International conference on artificial neural networks, pp. 799-804, 2005. 24. Ng A.Sparse autoencoder. CS294A Lecture notes, vol. 72, pp. 1-19, 2011. 25. Tschannen M., Bachem O., andLucic, M. Recent Advances in Autoencoder-based Representation Learning. arXiv preprint arXiv:1812.05069, 2018. 26. Chen Z., Yeo C.K., Lee B.S., andLau, C.T. Autoencoder-based Network Anomaly Detection. In2018 Wireless telecommunications symposium (WTS), IEEE, pp. 1-5, 2018. 27. Nguyen H.D., Tran K.P., Thomassey S., andHamad M.Forecasting and Anomaly Detection Approaches using LSTM and LSTM Autoencoder Techniques with the Applications in Supply Chain Management. International Journal of Information Management, vol. 57, pp. 102282, 2021. 28. Zhao F., Feng J., Zhao J., Yang W., andYan S.Robust LSTM-autoencoders for Face De-occlusion in the Wild. IEEE Transactions on Image Processing, vol. 27, no. 2, pp. 778-790, 2017. 29. Park D., Hoshi Y., andKemp C.C.A Multimodal Anomaly Detector for Robot-assisted Feeding using an LSTM-based Variational Autoencoder. IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1544-1551, 2018. |