1. Ulep M., Saraon S., andMcLea, S. Alzheimer disease. The Journal for Nurse Practitioners, vol. 14, no. 3, pp. 129-135, 2018 2. Weidner, W.,Barbarino, P.The state of the art of dementia research: new frontiers. Alzheimer's and Dementia, vol. 15, pp. 1473, 2019 3. Liu S., Liu S., Cai W., Pujol S., Kikinis R. and Feng, D. Early diagnosis of Alzheimer's disease with deep learning. In2014 IEEE 11th international symposium on biomedical imaging (ISBI), IEEE, pp. 1015-1018, 2014, April. 4. Frisoni G., Fox N., Jack Jr, C., Scheltens, P., and Thompson, P. The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, vol. 6, no. 2, pp. 67-77, 2010 5. Braak, H.,Braak, E.Neuropathological staging of Alzheimer-related changes. Acta neuropathologica, vol. 82, no. 4, pp. 239-259, 1991. 6. Tripoliti E., Fotiadis D., andArgyropoulou M.A supervised method to assist the diagnosis and monitor progression of Alzheimer's disease using data from an fMRI experiment. Artificial intelligence in medicine, vol. 53, no. 1, pp. 35-45, 2011 7. Van Leemput, K., Maes, F., Vandermeulen, D., and Suetens, P. Automated model-based tissue classification of MR images of the brain. IEEE transactions on medical imaging, vol. 18, no. 10, pp. 897-908, 1999 8. Hinrichs C., Singh V., Mukherjee L., Xu G., Chung M., Johnson S., andADNI. Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. Neuroimage, vol. 48, no. 1, pp. 138-149, 2009 9. Mateos-Pérez, J., Dadar, M., Lacalle-Aurioles, M., Iturria-Medina, Y., Zeighami, Y., and Evans, A. Structural neuroimaging as clinical predictor: A review of machine learning applications. NeuroImage: Clinical, vol. 20, pp. 506-522, 2018 10. Li F., Liu M., andADNI. Alzheimer's disease diagnosis based on multiple cluster dense convolutional networks.Computerized Medical Imaging and Graphics, vol. 70, pp. 101-110, 2018 11. Vincent P., Larochelle H., Lajoie I., Bengio Y., Manzagol P., andBottou L.Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of machine learning research, vol. 11, no. 12, pp. 3371-3408, 2010 12 12.LeCun, Y. LeNet-5, convolutional neural networks [Online], (2015). Available at: http://yann.lecun.com/exdb/lenet (Accessed: July, 2023. 13. Sun Z., Xue L., Xu Y., andWang Z.Overview of deep learning. Jisuanji Yingyong Yanjiu, vol. 29, no. 8, pp. 2806-2810, 2012 14. Krizhevsky A., Sutskever I., andHinton G.Imagenet classification with deep convolutional neural networks. Communications of the ACM, vol. 60, no. 6, pp. 84-90, 2017 15. Dang, T.,Bui, N.Multi-Scale Fully Convolutional Network-Based Semantic Segmentation for Mobile Robot Navigation. Electronics, vol. 12, no. 3, pp. 533, 2023 16. Girshick R., Donahue J., Darrell T., andMalik J.Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580-587, 2014 17. Lin W., Tong T., Gao Q., Guo D., Du X., Yang Y., Guo G., Xiao M., Du M., Qu X., andADNI. Convolutional neural networks-based MRI image analysis for the Alzheimer's disease prediction from mild cognitive impairment. Frontiers in neuroscience, vol. 12, pp. 777, 2018 18. Pathak A., Batra S., andSharma, V. An Assessment of the Missing Data Imputation Techniques for COVID-19 Data. In Proceedings of 3rd International Conference on Machine Learning, Advances in Computing, Renewable Energy and Communication: MARC2021, Singapore, pp. 701-706, 2021 19. Ortiz A., Munilla J., Gorriz J., andRamirez J.Ensembles of deep learning architectures for the early diagnosis of Alzheimer's disease. International journal of neural systems, vol. 26, no. 7, pp. 1650025, 2016 20. Opitz, D.,Maclin, R.Popular ensemble methods: An empirical study. Journal of artificial intelligence research, vol. 11, pp. 169-198, 1999 21. Islam, J.,Zhang, Y.Brain MRI analysis for Alzheimer's disease diagnosis using an ensemble system of deep convolutional neural networks. Brain informatics, vol. 5, pp. 1-14, 2018 22. Suk H., Lee S., Shen D., andAdni. Deep ensemble learning of sparse regression models for brain disease diagnosis.Medical image analysis, vol. 37, pp. 101-113, 2017 23. Ji H., Liu Z., Yan W., andKlette R.Early diagnosis of Alzheimer's disease using deep learning. In Proceedings of the 2nd International Conference on Control and Computer Vision, pp. 87-91, 2019 24. Shmulev Y., Belyaev M., andAdni. Predicting conversion of mild cognitive impairments to Alzheimer's disease and exploring impact of neuroimaging. In Graphs in Biomedical Image Analysis and Integrating Medical Imaging and Non-Imaging Modalities: Second International Workshop, GRAIL2018 and First International Workshop, pp. 83-91, 2018 25. Valliani, A.,Soni, A.Deep residual nets for improved Alzheimer's diagnosis. In Proceedings of the 8th ACM international conference on bioinformatics, computational biology, and health informatics, 2017, pp. 615-615. 26. Aderghal K., Afdel K., Benois-Pineau, J., and Catheline, G. Improving Alzheimer's stage categorization with Convolutional Neural Network using transfer learning and different magnetic resonance imaging modalities. Heliyon, vol. 6, no. 12, 2020 27. Bae J., Stocks J., Heywood A., Jung Y., Jenkins L., Hill V., Katsaggelos A., Popuri K., Rosen H., Beg M., andWang L.Transfer learning for predicting conversion from mild cognitive impairment to dementia of Alzheimer's type based on a three-dimensional convolutional neural network. Neurobiology of aging, vol. 99, pp. 53-64, 2021 28. Waliszewski, P.,Konarski, J.A mystery of the Gompertz function. Fractals in biology and medicine, vol. 4, pp. 277-286, 2005 29. Alzheimer's Dataset (4 class of Images) Available: https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images, Accessed January 2023. 30. Batra, S.,Sachdeva, S.Organizing standardized electronic healthcare records data for mining. Health Policy and Technology, vol. 5, no. 3, pp. 226-242, 2016 31. Batra, S.,Sachdeva, S.Pre-processing highly sparse and frequently evolving standardized electronic health records for mining. In Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning, IGI Global, pp. 8-21, 2021 32. Batra S., Sharma H., Boulila W., Arya V., Srivastava P., Khan M. Z., andKrichen M.An Intelligent Sensor Based Decision Support System for Diagnosing Pulmonary Ailment through Standardized Chest X-ray Scans. Sensors, vol. 22, no. 19, pp.7474, 2022 33. Batra S., Khurana R., Khan M. Z., Boulila W., Koubaa A., andSrivastava P.A Pragmatic Ensemble Strategy for Missing Values Imputation in Health Records. Entropy, vol. 24, no. 4, pp. 533, 2022 34. Carvalho T., De Rezende E., Alves M., Balieiro F., andSovat, R. Exposing computer-generated images by eye’s region classification via transfer learning of VGG19 CNN. In2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 866-870, 2017 35. Sachdeva S., Batra D., andBatra S. Storage Efficient Implementation of Standardized Electronic Health Records Data. In2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2062-2065, 2020 36. Wu Y., Qin X., Pan Y., andYuan, C. Convolution neural network-based transfer learning for classification of flowers. In2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP), pp. 562-566, 2018 37. Goswami P., Noorwali A., Kumar A., Khan M., Srivastava P., andBatra S.Appraising Early Reliability of a Software Component Using Fuzzy Inference. Electronics, vol. 12, pp. 1137, 2023. 38. Song M.,Mallol-Ragolta, A., Parada-Cabaleiro, E., Yang, Z., Liu, S., Ren, Z., Zhao, Z., and Schuller, B. Frustration recognition from speech during game interaction using wide residual networks. Virtual Reality and Intelligent Hardware, vol. 3, no. 1, pp. 76-86, 2021 39. He K., Zhang X., Ren S., andSun J.Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, 2016 40. Ren Y., Liu F., Xia S., Shi S., Chen L., andWang Z.Dynamic ECG signal quality evaluation based on persistent homology and GoogLeNet method. Frontiers in Neuroscience, vol. 17, pp.1153386, 2023 41. Huang J., Gong W., andChen H.Menfish classification based on Inception_V3 convolutional neural network. IOP Conference Series: Materials Science and Engineering,vol. 677, no. 5, pp. 052099, 2019 42. Ioffe, S.,Szegedy, C.Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning, pp. 448-456, 2015 |