Int J Performability Eng ›› 2023, Vol. 19 ›› Issue (7): 452-461.doi: 10.23940/ijpe.23.07.p4.452461
Previous Articles Next Articles
Srishti Bhugra and Puneet Goswami*
Contact:
* E-mail address: srishti.bhugra@gmail.com
Srishti Bhugra and Puneet Goswami. Exploratory Review of Machine Learning-Based Software Component Reusability Prediction [J]. Int J Performability Eng, 2023, 19(7): 452-461.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1. Mili H., Mili F. and Mili A., 1995. Reusing software: Issues and research directions. 2. McIlroy M.D., Buxton J., Naur P. and Randell B., 1968, October. Mass-produced software components. InProceedings of the 1st international conference on software engineering, Garmisch Pattenkirchen, Germany(pp. 88-98). 3. Singh S., Singh S. and Singh G., 2010. Reusability of the Software. 4. Peters, J.F. and Pedrycz, W., 1998. 5. Jalender B., Govardhan A. and Premchand P., 2010. A PRAGMATIC APPROACH TO SOFTWARE REUSE. 6. Cybulski J.L.,1996. Introduction to software reuse. 7. Goswami P., Noorwali A., Kumar A., Khan M.Z., Srivastava P. and Batra S., 2023. Appraising Early Reliability of a Software Component Using Fuzzy Inference. 8. Batra S., Khurana R., Khan M.Z., Boulila W., Koubaa A. and Srivastava P., 2022. A Pragmatic Ensemble Strategy for Missing Values Imputation in Health Records. 9. Batra S., Sharma H., Boulila W., Arya V., Srivastava P., Khan M.Z. and Krichen M., 2022. An intelligent sensor based decision support system for diagnosing pulmonary ailment through standardized chest x-ray scans. 10. Kaur A., Cheema R.S. and Sandhu P.S., 2012, March. Identification of Reusable Procedure Based Modules using kNN Approach. InInternational Conference on Latest Computational Technologies (ICLCT'2012) March(pp. 17-18). 11. Prieto-Diaz, R. and Freeman, P., 1987. Classifying software for reusability. 12.Selby, R.W., 1989. Quantitative Studies of Software Reuse in Software Reusabilty[M]. 13. Deng-Jyi, C. and Lee, P.J., 1993. On the study of software reuse using reusable C++ components. 14. Caldiera, G. and Basili, V.R., 1991. Identifying and qualifying reusable software components. 15.Karlsson E.A., Sindre G. and Stalhane T., 1992. 16. Hislop G.W.,1993, November. Using existing software in a software reuse initiative. In 17. Boetticher G., Srinivas K. and Eichmann D.A., 1992. A neural net-based approach to software metrics. 18. Torres, W.R. and Samadzadeh, M., 1991, January. Software reuse and information theory based metrics. In 19. Mayobre G.,1991, November. Using Code Reusability Analysis to Identify Reusable Components from Software Related to an Application Domain. InProceedings of Fourth Annual Workshop on Software Reuse, Reston(pp. 18-22). 20. Ruegsegger T.B.,1988. Making reuse pay: the SIDPERS-3 RAPID Center. 21. Manhas S., Sandhu P.S., Chopra V. and Neeru N., 2010. Identification of reusable software modules in function oriented software systems using neural network based technique. 22. Sandhu, P.S. and Singh, H., 2008. A reusability evaluation model for OO-based software components. 23. Sandhu P.S., Singh J., Gupta V., Kaur M., Manhas S. and Sidhu R., 2010. A k-means based clustering approach for finding faulty modules in open source software systems. 24. Shri A., Sandhu P.S., Gupta V. and Anand S., 2010. Prediction of reusability of object oriented software systems using clustering approach. 25. Kanellopoulos Y., Dimopulos T., Tjortjis C. and Makris C., 2006. Mining source code elements for comprehending object-oriented systems and evaluating their maintainability. 26. Kumar A.,2012. Measuring Software reusability using SVM based classifier approach. 27. Saini J.K., Sharma A. and Sandhu D.P.S., 2006. Software reusability prediction using density based clustering. 28. Sachdeva S., Batra D. and Batra S., 2020, December. Storage efficient implementation of standardized electronic health records data. In 29. Batra, S. and Sachdeva, S., 2016. Organizing standardized electronic healthcare records data for mining. 30. Zhang X., Xiao H., Gao R., Zhang H. and Wang Y., 2022. K-nearest neighbors rule combining prototype selection and local feature weighting for classification. 31. Pathak A., Batra S. and Sharma V., 2022, September. An assessment of the missing data imputation techniques for covid-19 data. In 32. Costache R., Arabameri A., Moayedi H., Pham Q.B., Santosh M., Nguyen H., Pandey M. and Pham B.T., 2022. Flash-flood potential index estimation using fuzzy logic combined with deep learning neural network, naïve Bayes, XGBoost and classification and regression tree. 33. J. Quinlan, “Induction of decision trees,” 34. Karatsiolis, S. and Schizas, C.N., 2012, November. Region based Support Vector Machine algorithm for medical diagnosis on Pima Indian Diabetes dataset. In 35. Han Y., Xu K. and Qin J., 2023. Based on the CART Decision Tree Model of Prediction and Classification of Ancient Glass-Related Properties. 36. Hu, J. and Szymczak, S., 2023. A review on longitudinal data analysis with random forest. 37. Vapnik V.N.,1999. An overview of statistical learning theory. 38. Yekkehkhany B., Safari A., Homayouni S. and Hasanlou M., 2014. A comparison study of different kernel functions for SVM-based classification of multi-temporal polarimetry SAR data. 39. Box, G.E. and Tiao, G.C., 2011. 40. Kanungo T., Mount D.M., Netanyahu N.S., Piatko C.D., Silverman R. and Wu A.Y., 2002. An efficient k-means clustering algorithm: Analysis and implementation. 41. Glennie R., Adam T., Leos‐Barajas V., Michelot T., Photopoulou T. and McClintock B.T., 2023. Hidden Markov models: Pitfalls and opportunities in ecology. 42. Mumali F.,2022. Artificial neural network-based decision support systems in manufacturing processes: A systematic literature review. 43. “ISO/IEC 25010:2011,” [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en. [Accessed 2023 January 12]. 44. Papamichail M.D., Diamantopoulos T. and Symeonidis A.L., 2019. Measuring the reusability of software components using static analysis metrics and reuse rate information. 45. Fazal-e-Amin, A.K.M. and Oxley, A., 2011. Reusability assessment of open source components for software product lines. |
[1] | C. Rohith Bhat and Madhusundar Nelson. Artificial Intelligence Based Credit Card Fraud Detection for Online Transactions Optimized with Sparrow Search Algorithm [J]. Int J Performability Eng, 2023, 19(9): 624-632. |
[2] | Kavita Pandey, and Dhiraj Pandey. Real-Time Crop Disease Detection and Remedial Suggestion through Deep Learning-based Smartphone Application [J]. Int J Performability Eng, 2023, 19(8): 491-498. |
[3] | Savita Khurana, Gaurav Sharma, and Bhawna Sharma. Hybrid Machine Learning Model for Load Prediction in Cloud Environment [J]. Int J Performability Eng, 2023, 19(8): 507-515. |
[4] | K. Eswara Rao, Bala Murali Pydi, T. Panduranga Vital, P. Annan Naidu, U. D. Prasann, and T. Ravikumar. An Advanced Machine Learning Approach for Student Placement Prediction and Analysis [J]. Int J Performability Eng, 2023, 19(8): 536-546. |
[5] | Babaljeet Kaur and Shalli Rani. Are the Customers Receiving Exact Recommendations from the E-Commerce Companies? Towards the Identification of Gray Sheep Users Using Personality Parameters [J]. Int J Performability Eng, 2023, 19(7): 425-433. |
[6] | Kshitij Kumar Sinha, Manoj Mathur, and Arun Sharma. Suitability Index Prediction for Residential Apartments Through Machine Learning [J]. Int J Performability Eng, 2023, 19(7): 434-442. |
[7] | Manpreet Kaur and Shalli Rani. Recommender System: Towards Identification of Shilling Attacks in Rating System Using Machine Learning Algorithms [J]. Int J Performability Eng, 2023, 19(7): 443-451. |
[8] | Harsha Gaikwad, Sanil Gandhi, Arvind Kiwelekar, and Manjushree Laddha. Analyzing Brain Signals for Predicting Students’ Understanding of Online Learning: A Machine Learning Approach [J]. Int J Performability Eng, 2023, 19(7): 462-470. |
[9] | Rakesh Kumar, Sunny Arora, Ashima Arya, Neha Kohli, Vaishali Arya, and Ekta Singh. Ensemble Learning for Appraising English Text Readability using Gompertz Function [J]. Int J Performability Eng, 2023, 19(6): 388-396. |
[10] | Pranshu Kumar Soni and Leema Nelson. PCP: Profit-Driven Churn Prediction using Machine Learning Techniques in Banking Sector [J]. Int J Performability Eng, 2023, 19(5): 303-311. |
[11] | Ramneet Kaur, Deepali Gupta, and Mani Madhukar. Learner-Centric Hybrid Filtering-Based Recommender System for Massive Open Online Courses [J]. Int J Performability Eng, 2023, 19(5): 324-333. |
[12] | Mahima Yadav and Ishan Kumar. Image Processing-Based Transliteration from Hindi to English [J]. Int J Performability Eng, 2023, 19(5): 334-341. |
[13] | Harshvardhan Singh Chauhan, Himanshi Babbar, and Shalli Rani. D2PG: Deep Deterministic Policy Gradient-Based Vehicular Edge Caching Scheme for Digital Twin-Based Vehicular Networks [J]. Int J Performability Eng, 2023, 19(5): 350-358. |
[14] | Chia-En Lai and Chin-Yu Huang. Developing a Modified Fuzzy-GE Algorithm for Enhanced Test Suite Reduction Effectiveness [J]. Int J Performability Eng, 2023, 19(4): 223-233. |
[15] | Harshita Batra and Leema Nelson. DCADS: Data-Driven Computer Aided Diagnostic System using Machine Learning Techniques for Polycystic Ovary Syndrome [J]. Int J Performability Eng, 2023, 19(3): 193-202. |
|