1. Dong-Xin H., Yi J. and Zhao-Xia S., 2021, November. Selection of cancer treatment protocol evaluation based on multi-objective. In 2021 11th International Conference on Information Technology in Medicine and Education (ITME)(pp. 287-291). IEEE. 2. Huo, L. and Tang, Y., 2022. Multi-Objective Deep Reinforcement Learning for Personalized Dose Optimization Based on Multi-Indicator Experience Replay.Applied Sciences, 13(1), p.325. 3. Ghaffari A., Shafigh M. and Nazari M., 2019. Proposing a Finite Duration Cancer Treatment Using Multi-Objective Optimization. Amirkabir Journal of Mechanical Engineering,52(5), pp.1365-1376. 4. Yang C.Y., Shiranthika C., Wang C.Y., Chen K.W. and Sumathipala S., 2022. Reinforcement Learning Strategies in Cancer Chemotherapy Treatment: A Review. Computer Methods and Programs in Biomedicine, p.107280. 5. Salas-Benito D., Pérez-Gracia J.L., Ponz-Sarvisé M., Rodriguez-Ruiz M.E., Martínez-Forero I., Castañón E., López-Picazo J.M., Sanmamed M.F. and Melero I., 2021. Paradigms on immunotherapy combinations with chemotherapy. Cancer discovery,11(6), pp.1353-1367. 6. Cazzaniga M.E., Cordani N., Capici S., Cogliati V., Riva F. and Cerrito M.G., 2021. Metronomic chemotherapy.Cancers, 13(9), p.2236. 7. Adhikari S., Bhattacharya A., Adhikary S., Singh V., Gadad S.S., Roy S. and Das C., 2022. The paradigm of drug resistance in cancer: an epigenetic perspective. Bioscience Reports, 42(4), p.BSR20211812. 8. Samy P.G., Kanesan J. and Tiu Z.C., 2023. Optimization of Chemotherapy Using Hybrid Optimal Control and Swarm Intelligence.IEEE Access, 11, pp.28873-28886. 9. Li, T. and Guo, Y., 2022. Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination. Chaos, Solitons & Fractals, 156, p.111825. 10. Wang D., Ha M. and Zhao M., 2022. The intelligent critic framework for advanced optimal control.Artificial Intelligence Review, pp.1-22. 11. Wu X., Hou Y. and Zhang K., 2022. Switched system optimal control approach for drug administration in cancer chemotherapy. Biomedical Signal Processing and Control, 75, p.103575. 12. Abidemi, A. and Akanni, J.O., 2022. Dynamics of illicit drug use and banditry population with optimal control strategies and cost-effectiveness analysis.Computational and Applied Mathematics, 41(1), p.53. 13. Swan, G.W. and Vincent, T.L., 1977. Optimal control analysis in the chemotherapy of IgG multiple myeloma.Bulletin of mathematical biology, 39, pp.317-337. 14. Parker, R.S. and Doyle III, F.J., 2001. Control-relevant modeling in drug delivery. Advanced drug delivery reviews,48(2-3), pp.211-228. 15. Bhonsle, S. and Saxena, S., 2020. A review on control-relevant glucose-insulin dynamics models and regulation strategies. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,234(5), pp.596-608. 16. Engelhart M., Lebiedz D. and Sager S., 2011. Optimal control for selected cancer chemotherapy ODE models: a view on the potential of optimal schedules and choice of objective function. Mathematical biosciences,229(1), pp.123-134. 17. Heydarpoor F., Karbassi S.M., Bidabadi N. and Ebadi M.J., 2020. Solving multi-objective functions for cancer treatment by using Metaheuristic Algorithms. International Journal of Combinatorial Optimization Problems & Informatics,11(3). 18. Shi J., Alagoz O., Erenay F.S. and Su Q., 2014. A survey of optimization models on cancer chemotherapy treatment planning.Annals of Operations Research, 221, pp.331-356. 19. Libotte G.B., Lobato F.S., Platt G.M. and Neto A.J.S., 2020. Determination of an optimal control strategy for vaccine administration in COVID-19 pandemic treatment. Computer methods and programs in biomedicine, 196, p.105664. 20. Cui Y., Meng X. and Qiao J., 2022. A multi-objective particle swarm optimization algorithm based on two-archive mechanism. Applied soft computing, 119, p.108532. 21. Shindi O., Kanesan J., Kendall G. and Ramanathan A., 2020. The combined effect of optimal control and swarm intelligence on optimization of cancer chemotherapy. Computer Methods and Programs in Biomedicine, 189, p.105327. 22. Dhieb N., Abdulrashid I., Ghazzai H. and Massoud Y., 2023. Optimized drug regimen and chemotherapy scheduling for cancer treatment using swarm intelligence. Annals of Operations Research,320(2), pp.757-770. 23. Wu X., Lin J., Zhang K. and Cheng M., 2022. Numerical algorithm for optimal control of switched systems and its application in cancer chemotherapy. Applied Soft Computing, 115, p.108090. 24. Zheng J., Zhang Z., Zou J., Yang S., Ou J. and Hu Y., 2022. A dynamic multi-objective particle swarm optimization algorithm based on adversarial decomposition and neighborhood evolution. Swarm and Evolutionary Computation, 69, p.100987. 25. Petrovski, A. and McCall, J., 2001, March. Multi-objective optimisation of cancer chemotherapy using evolutionary algorithms. In International Conference on Evolutionary Multi-Criterion Optimization(pp. 531-545). Berlin, Heidelberg: Springer Berlin Heidelberg. 26. De Pillis, L.G. and Radunskaya, A., 2003. The dynamics of an optimally controlled tumor model: A case study. Mathematical and computer modelling,37(11), pp.1221-1244. 27. Mirjalili S., Saremi S., Mirjalili S.M. and Coelho L.D.S., 2016. Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization.Expert systems with applications, 47, pp.106-119. 28. Lobato F.S., Machado V.S. and Steffen Jr V., 2016. Determination of an optimal control strategy for drug administration in tumor treatment using multi-objective optimization differential evolution.Computer methods and programs in biomedicine, 131, pp.51-61. |