1. |
Shirai Y. Three-dimensional computer vision. Springer Science & Business Media, 2012.
|
2. |
British Polygraph Association. ( n. d.). Accuracy and Validity of Polygraph Testing. .
|
3. |
LeCun Y., Bengio Y. and Hinton G. Deep learning. nature, vol. 521, no. 7553, pp. 436-444, 2015.
|
4. |
Krizhevsky A., Sutskever I. and Hinton, G.E. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, vol. 25, pp. 1-9, 2012.
|
5. |
Vinyals O., Toshev A., Bengio S. and Erhan D. Show and tell: A neural image caption generator. In Proceedings of the IEEE conference on computer vision and pattern recognition pp. 3156-3164, 2015.
|
6. |
Vrij A. and Granhag, P.A. Eliciting cues to deception and truth: What matters are the questions asked. Journal of Applied Research in Memory and Cognition, vol. 1, no. 2, pp. 110-117, 2012.
|
7. |
American Psychological Association. ( n. d.). Emotions. APA. .
|
8. |
Lie Detector Test UK. ( n. d.). Lie Detector Test Accuracy.
|
9. |
Puddifoot K. Re-evaluating the credibility of eyewitness testimony: the misinformation effect and the overcritical juror. Episteme, vol. 17, no. 2, pp. 255-279, 2020.
|
10. |
Schwartz J. As jurors turn to web, mistrials are popping up. New York Times, vol. 3, no. 17, pp. 9, 2009.
|
11. |
Rensink R.A. The dynamic representation of scenes. Visual cognition, vol. 7, no. 1-3, pp. 17-42, 2000.
|
12. |
Ghebreab S., Scholte S., Lamme V. and Smeulders A. A biologically plausible model for rapid natural scene identification. Advances in Neural Information Processing Systems, vol. 22, 2009.
|
13. |
Khalid S., Khalil T. and Nasreen S. A survey of feature selection and feature extraction techniques in machine learning. In 2014 science and information conference, IEEE, pp. 372-378, 2014, August.
|
14. |
Azhan S., Zaman A. and Bhuiyan, M.R. Using machine learning for lie detection: classification of human visual morphology (Doctoral dissertation, BRAC University), 2018.
|
15. |
Pérez-Rosas V., Abouelenien M., Mihalcea R. and Burzo M. Deception detection using real-life trial data. In Proceedings of the 2015 ACM on international conference on multimodal interaction, pp. 59-66, 2015.
|
16. |
Su L. and Levine M. Does “lie to me” lie to you? An evaluation of facial clues to high-stakes deception. Computer Vision and Image Understanding, vol. 147, pp. 52-68, 2016.
|
17. |
Gogate M., Adeel A. and Hussain A. Deep learning driven multimodal fusion for automated deception detection. In 2017 IEEE symposium series on computational intelligence (SSCI), pp. 1-6, IEEE, 2017
|
18. |
Wu Z., Singh B., Davis L. and Subrahmanian, V. Deception detection in videos. In Proceedings of the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.
|
19. |
Krishnamurthy G., Majumder N., Poria S. and Cambria E. A deep learning approach for multimodal deception detection. In International Conference on Computational Linguistics and Intelligent Text Processing, Cham: Springer Nature Switzerland, pp. 87-96, 2018, March.
|
20. |
Avola D., Cinque L., Foresti G.L. and Pannone D.Automatic deception detection in rgb videos using facial action units. In Proceedings of the 13th International Conference on Distributed Smart Cameras, pp. 1-6, 2019, September.
|
21. |
Rill-García R., Jair Escalante H., Villasenor-Pineda L. and Reyes-Meza V.High-level features for multimodal deception detection in videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp.1-9. 2019.
|
22. |
Ding M., Zhao A., Lu Z., Xiang T., and Wen J.R. Face-focused cross-stream network for deception detection in videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.7802-7811, 2019.
|
23. |
Jaiswal M., Tabibu S. and Bajpai R. The truth and nothing but the truth: Multimodal analysis for deception detection. In 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), IEEE, pp. 938-943, 2016, December.
|
24. |
Martínez-Fernández S., Bogner J., Franch X., Oriol M., Siebert J., Trendowicz A., Vollmer A.M. and Wagner S. Software engineering for AI-based systems: a survey. ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 31, no. 2, pp. 1-59.
|
25. |
Vrij A. Telling and detecting lies. Applying psychology, pp. 179-241, 2002.
|
26. |
Grinciunaite A., Gudi A., Tasli E. and Den Uyl M.Human pose estimation in space and time using 3d cnn. In European Conference on Computer Vision, Cham: Springer International Publishing, pp. 32-39, 2016, October.
|
27. |
Hu W.S., Li H.C., Pan L., Li W., Tao R. and Du Q. Spatial-spectral feature extraction via deep ConvLSTM neural networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 6) pp. 4237-4250, 2020.
|
28. |
Zou X., Zhong S., Yan L., Zhao X., Zhou J. and Wu Y.Learning robust facial landmark detection via hierarchical structured ensemble. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.141-150, 2019.
|
29. |
Guns R. and Rousseau R. Recommending research collaborations using link prediction and random forest classifiers. Scientometrics, vol. 101, pp. 1461-1473, 2014.
|
30. |
Johnson L., Lee K., Fletcher R., andWilson, D., Combining Convolutional and Recurrent Neural Networks for Efficient Image Classification.
|
31. |
Vrij A. and Granhag, P.A. Eliciting cues to deception and truth: What matters are the questions asked. Journal of Applied Research in Memory and Cognition, vol. 1, no. 2, pp. 110-117, 2012.
|
32. |
Ekman P. Lying and nonverbal behavior: Theoretical issues and new findings. Journal of nonverbal behavior, vol. 12, pp. 163-175, 1988.
|
33. |
DePaulo B.M., Lindsay J.J., Malone B.E., Muhlenbruck L., Charlton K. and Cooper H. Cues to deception. Psychological bulletin, vol. 129, no. 1, pp. 74, 2003.
|
34. |
Dara S. and Tumma P. Feature extraction by using deep learning: A survey. In 2018 Second international conference on electronics, communication and aerospace technology (ICECA), IEEE, pp. 1795- 1801, 2018, March.
|
35. |
Guyon I., Gunn S., Nikravesh M. and Zadeh, L. A. eds. Feature extraction: foundations and applications, vol. 207, Springer, 2008.
|
36. |
Yu Z., Liu G., Liu Q. and Deng J. Spatio-temporal convolutional features with nested LSTM for facial expression recognition. Neurocomputing, vol. 317, pp. 50-57, 2018.
|